ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcdnql Unicode version

Theorem prcdnql 6674
Description: A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prcdnql  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )

Proof of Theorem prcdnql
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6555 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4410 . . . . 5  |-  ( C 
<Q  B  ->  ( C  e.  Q.  /\  B  e.  Q. ) )
32simpld 110 . . . 4  |-  ( C 
<Q  B  ->  C  e. 
Q. )
43adantl 271 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  Q. )
5 breq1 3788 . . . . . . 7  |-  ( c  =  C  ->  (
c  <Q  B  <->  C  <Q  B ) )
6 eleq1 2141 . . . . . . 7  |-  ( c  =  C  ->  (
c  e.  L  <->  C  e.  L ) )
75, 6imbi12d 232 . . . . . 6  |-  ( c  =  C  ->  (
( c  <Q  B  -> 
c  e.  L )  <-> 
( C  <Q  B  ->  C  e.  L )
) )
87imbi2d 228 . . . . 5  |-  ( c  =  C  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( c  <Q  B  -> 
c  e.  L ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) ) )
91brel 4410 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( c  e.  Q.  /\  B  e.  Q. ) )
109ancomd 263 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( B  e.  Q.  /\  c  e.  Q. ) )
11 an42 551 . . . . . . . . 9  |-  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  <-> 
( ( B  e. 
Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. ) ) )
12 breq2 3789 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
c  <Q  b  <->  c  <Q  B ) )
13 eleq1 2141 . . . . . . . . . . . . . . . 16  |-  ( b  =  B  ->  (
b  e.  L  <->  B  e.  L ) )
1412, 13anbi12d 456 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  (
( c  <Q  b  /\  b  e.  L
)  <->  ( c  <Q  B  /\  B  e.  L
) ) )
1514rspcev 2701 . . . . . . . . . . . . . 14  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) )
16 elinp 6664 . . . . . . . . . . . . . . . 16  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U ) )  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) ) )
17 simpr1l 995 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U )
)  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) )  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) ) )
1816, 17sylbi 119 . . . . . . . . . . . . . . 15  |-  ( <. L ,  U >.  e. 
P.  ->  A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) ) )
1918r19.21bi 2449 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q 
b  /\  b  e.  L ) ) )
2015, 19syl5ibrcom 155 . . . . . . . . . . . . 13  |-  ( ( B  e.  Q.  /\  ( c  <Q  B  /\  B  e.  L )
)  ->  ( ( <. L ,  U >.  e. 
P.  /\  c  e.  Q. )  ->  c  e.  L ) )
21203impb 1134 . . . . . . . . . . . 12  |-  ( ( B  e.  Q.  /\  c  <Q  B  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
22213com12 1142 . . . . . . . . . . 11  |-  ( ( c  <Q  B  /\  B  e.  Q.  /\  B  e.  L )  ->  (
( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) )
23223expib 1141 . . . . . . . . . 10  |-  ( c 
<Q  B  ->  ( ( B  e.  Q.  /\  B  e.  L )  ->  ( ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )  ->  c  e.  L ) ) )
2423impd 251 . . . . . . . . 9  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  B  e.  L )  /\  ( <. L ,  U >.  e.  P.  /\  c  e.  Q. )
)  ->  c  e.  L ) )
2511, 24syl5bi 150 . . . . . . . 8  |-  ( c 
<Q  B  ->  ( ( ( B  e.  Q.  /\  c  e.  Q. )  /\  ( B  e.  L  /\  <. L ,  U >.  e.  P. ) )  ->  c  e.  L
) )
2610, 25mpand 419 . . . . . . 7  |-  ( c 
<Q  B  ->  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  c  e.  L ) )
2726com12 30 . . . . . 6  |-  ( ( B  e.  L  /\  <. L ,  U >.  e. 
P. )  ->  (
c  <Q  B  ->  c  e.  L ) )
2827ancoms 264 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  (
c  <Q  B  ->  c  e.  L ) )
298, 28vtoclg 2658 . . . 4  |-  ( C  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) ) )
3029impd 251 . . 3  |-  ( C  e.  Q.  ->  (
( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L
) )
314, 30mpcom 36 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  B  e.  L )  /\  C  <Q  B )  ->  C  e.  L )
3231ex 113 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  ( C  <Q  B  ->  C  e.  L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   <.cop 3401   class class class wbr 3785   Q.cnq 6470    <Q cltq 6475   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-qs 6135  df-ni 6494  df-nqqs 6538  df-ltnqqs 6543  df-inp 6656
This theorem is referenced by:  prubl  6676  addnqprllem  6717  nqprl  6741  mulnqprl  6758  distrlem4prl  6774  ltprordil  6779  1idprl  6780  ltpopr  6785  ltaddpr  6787  ltexprlemlol  6792  ltexprlemfl  6799  ltexprlemrl  6800  aptiprleml  6829  aptiprlemu  6830  archrecpr  6854  caucvgprprlemml  6884
  Copyright terms: Public domain W3C validator