ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  asymref Unicode version

Theorem asymref 4730
Description: Two ways of saying a relation is antisymmetric and reflexive.  U. U. R is the field of a relation by relfld 4866. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Distinct variable group:    x, y, R

Proof of Theorem asymref
StepHypRef Expression
1 df-br 3786 . . . . . . . . . . 11  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
2 vex 2604 . . . . . . . . . . . 12  |-  x  e. 
_V
3 vex 2604 . . . . . . . . . . . 12  |-  y  e. 
_V
42, 3opeluu 4200 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  R  ->  ( x  e.  U. U. R  /\  y  e.  U. U. R ) )
51, 4sylbi 119 . . . . . . . . . 10  |-  ( x R y  ->  (
x  e.  U. U. R  /\  y  e.  U. U. R ) )
65simpld 110 . . . . . . . . 9  |-  ( x R y  ->  x  e.  U. U. R )
76adantr 270 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  ->  x  e.  U. U. R
)
87pm4.71ri 384 . . . . . . 7  |-  ( ( x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  ( x R y  /\  y R x ) ) )
98bibi1i 226 . . . . . 6  |-  ( ( ( x R y  /\  y R x )  <->  ( x  e. 
U. U. R  /\  x  =  y ) )  <-> 
( ( x  e. 
U. U. R  /\  (
x R y  /\  y R x ) )  <-> 
( x  e.  U. U. R  /\  x  =  y ) ) )
10 elin 3155 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
112, 3brcnv 4536 . . . . . . . . . 10  |-  ( x `' R y  <->  y R x )
12 df-br 3786 . . . . . . . . . 10  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
1311, 12bitr3i 184 . . . . . . . . 9  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
141, 13anbi12i 447 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
1510, 14bitr4i 185 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
163opelres 4635 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  U. U. R ) )
17 df-br 3786 . . . . . . . . . 10  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
183ideq 4506 . . . . . . . . . 10  |-  ( x  _I  y  <->  x  =  y )
1917, 18bitr3i 184 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
2019anbi2ci 446 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2116, 20bitri 182 . . . . . . 7  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2215, 21bibi12i 227 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( (
x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
23 pm5.32 440 . . . . . 6  |-  ( ( x  e.  U. U. R  ->  ( ( x R y  /\  y R x )  <->  x  =  y ) )  <->  ( (
x  e.  U. U. R  /\  ( x R y  /\  y R x ) )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
249, 22, 233bitr4i 210 . . . . 5  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( x  e.  U. U. R  -> 
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2524albii 1399 . . . 4  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  A. y
( x  e.  U. U. R  ->  ( (
x R y  /\  y R x )  <->  x  =  y ) ) )
26 19.21v 1794 . . . 4  |-  ( A. y ( x  e. 
U. U. R  ->  (
( x R y  /\  y R x )  <->  x  =  y
) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2725, 26bitri 182 . . 3  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2827albii 1399 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
29 relcnv 4723 . . . 4  |-  Rel  `' R
30 relin2 4474 . . . 4  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3129, 30ax-mp 7 . . 3  |-  Rel  ( R  i^i  `' R )
32 relres 4657 . . 3  |-  Rel  (  _I  |`  U. U. R
)
33 eqrel 4447 . . 3  |-  ( ( Rel  ( R  i^i  `' R )  /\  Rel  (  _I  |`  U. U. R ) )  -> 
( ( R  i^i  `' R )  =  (  _I  |`  U. U. R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) ) )
3431, 32, 33mp2an 416 . 2  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) )
35 df-ral 2353 . 2  |-  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
3628, 34, 353bitr4i 210 1  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   A.wral 2348    i^i cin 2972   <.cop 3401   U.cuni 3601   class class class wbr 3785    _I cid 4043   `'ccnv 4362    |` cres 4365   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-res 4375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator