| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > asymref | Unicode version | ||
| Description: Two ways of saying a
relation is antisymmetric and reflexive.
|
| Ref | Expression |
|---|---|
| asymref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 3786 |
. . . . . . . . . . 11
| |
| 2 | vex 2604 |
. . . . . . . . . . . 12
| |
| 3 | vex 2604 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | opeluu 4200 |
. . . . . . . . . . 11
|
| 5 | 1, 4 | sylbi 119 |
. . . . . . . . . 10
|
| 6 | 5 | simpld 110 |
. . . . . . . . 9
|
| 7 | 6 | adantr 270 |
. . . . . . . 8
|
| 8 | 7 | pm4.71ri 384 |
. . . . . . 7
|
| 9 | 8 | bibi1i 226 |
. . . . . 6
|
| 10 | elin 3155 |
. . . . . . . 8
| |
| 11 | 2, 3 | brcnv 4536 |
. . . . . . . . . 10
|
| 12 | df-br 3786 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | bitr3i 184 |
. . . . . . . . 9
|
| 14 | 1, 13 | anbi12i 447 |
. . . . . . . 8
|
| 15 | 10, 14 | bitr4i 185 |
. . . . . . 7
|
| 16 | 3 | opelres 4635 |
. . . . . . . 8
|
| 17 | df-br 3786 |
. . . . . . . . . 10
| |
| 18 | 3 | ideq 4506 |
. . . . . . . . . 10
|
| 19 | 17, 18 | bitr3i 184 |
. . . . . . . . 9
|
| 20 | 19 | anbi2ci 446 |
. . . . . . . 8
|
| 21 | 16, 20 | bitri 182 |
. . . . . . 7
|
| 22 | 15, 21 | bibi12i 227 |
. . . . . 6
|
| 23 | pm5.32 440 |
. . . . . 6
| |
| 24 | 9, 22, 23 | 3bitr4i 210 |
. . . . 5
|
| 25 | 24 | albii 1399 |
. . . 4
|
| 26 | 19.21v 1794 |
. . . 4
| |
| 27 | 25, 26 | bitri 182 |
. . 3
|
| 28 | 27 | albii 1399 |
. 2
|
| 29 | relcnv 4723 |
. . . 4
| |
| 30 | relin2 4474 |
. . . 4
| |
| 31 | 29, 30 | ax-mp 7 |
. . 3
|
| 32 | relres 4657 |
. . 3
| |
| 33 | eqrel 4447 |
. . 3
| |
| 34 | 31, 32, 33 | mp2an 416 |
. 2
|
| 35 | df-ral 2353 |
. 2
| |
| 36 | 28, 34, 35 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-res 4375 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |