ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-apti Unicode version

Theorem axpre-apti 7051
Description: Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 7091.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-apti  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )

Proof of Theorem axpre-apti
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 6997 . . 3  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 6997 . . 3  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 breq1 3788 . . . . . 6  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
4 breq2 3789 . . . . . 6  |-  ( <.
x ,  0R >.  =  A  ->  ( <. y ,  0R >.  <RR  <. x ,  0R >.  <->  <. y ,  0R >. 
<RR  A ) )
53, 4orbi12d 739 . . . . 5  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  <-> 
( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >.  <RR  A ) ) )
65notbid 624 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( -.  ( <. x ,  0R >. 
<RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  <. x ,  0R >. )  <->  -.  ( A  <RR 
<. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  A ) ) )
7 eqeq1 2087 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  =  <. y ,  0R >.  <->  A  =  <. y ,  0R >. ) )
86, 7imbi12d 232 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( -.  ( <. x ,  0R >. 
<RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  <. x ,  0R >. )  ->  <. x ,  0R >.  =  <. y ,  0R >. )  <->  ( -.  ( A  <RR  <.
y ,  0R >.  \/ 
<. y ,  0R >.  <RR  A )  ->  A  =  <. y ,  0R >. ) ) )
9 breq2 3789 . . . . . 6  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
10 breq1 3788 . . . . . 6  |-  ( <.
y ,  0R >.  =  B  ->  ( <. y ,  0R >.  <RR  A  <->  B  <RR  A ) )
119, 10orbi12d 739 . . . . 5  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  A )  <->  ( A  <RR  B  \/  B  <RR  A ) ) )
1211notbid 624 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( -.  ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >.  <RR  A )  <->  -.  ( A  <RR  B  \/  B  <RR  A ) ) )
13 eqeq2 2090 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  =  <. y ,  0R >.  <-> 
A  =  B ) )
1412, 13imbi12d 232 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( -.  ( A  <RR  <. y ,  0R >.  \/  <. y ,  0R >.  <RR  A )  ->  A  =  <. y ,  0R >. )  <->  ( -.  ( A  <RR  B  \/  B  <RR  A )  ->  A  =  B ) ) )
15 aptisr 6955 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  -.  ( x  <R  y  \/  y  <R  x )
)  ->  x  =  y )
16153expia 1140 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( -.  ( x 
<R  y  \/  y  <R  x )  ->  x  =  y ) )
17 ltresr 7007 . . . . . 6  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
18 ltresr 7007 . . . . . 6  |-  ( <.
y ,  0R >.  <RR  <. x ,  0R >.  <->  y  <R  x )
1917, 18orbi12i 713 . . . . 5  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  <-> 
( x  <R  y  \/  y  <R  x ) )
2019notbii 626 . . . 4  |-  ( -.  ( <. x ,  0R >. 
<RR  <. y ,  0R >.  \/  <. y ,  0R >. 
<RR  <. x ,  0R >. )  <->  -.  ( x  <R  y  \/  y  <R  x ) )
21 vex 2604 . . . . 5  |-  x  e. 
_V
2221eqresr 7004 . . . 4  |-  ( <.
x ,  0R >.  = 
<. y ,  0R >.  <->  x  =  y )
2316, 20, 223imtr4g 203 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( -.  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  \/ 
<. y ,  0R >.  <RR  <. x ,  0R >. )  ->  <. x ,  0R >.  =  <. y ,  0R >. ) )
241, 2, 8, 14, 232gencl 2632 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A 
<RR  B  \/  B  <RR  A )  ->  A  =  B ) )
25243impia 1135 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   <.cop 3401   class class class wbr 3785   R.cnr 6487   0Rc0r 6488    <R cltr 6493   RRcr 6980    <RR cltrr 6985
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-iltp 6660  df-enr 6903  df-nr 6904  df-ltr 6907  df-0r 6908  df-r 6991  df-lt 6994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator