ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofcom Unicode version

Theorem caofcom 5754
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofcom.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y )  =  ( y R x ) )
Assertion
Ref Expression
caofcom  |-  ( ph  ->  ( F  oF R G )  =  ( G  oF R F ) )
Distinct variable groups:    x, y, F   
x, G, y    ph, x, y    x, R, y    x, S, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem caofcom
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . 6  |-  ( ph  ->  F : A --> S )
21ffvelrnda 5323 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
3 caofcom.3 . . . . . 6  |-  ( ph  ->  G : A --> S )
43ffvelrnda 5323 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
52, 4jca 300 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
)  e.  S  /\  ( G `  w )  e.  S ) )
6 caofcom.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y )  =  ( y R x ) )
76caovcomg 5676 . . . 4  |-  ( (
ph  /\  ( ( F `  w )  e.  S  /\  ( G `  w )  e.  S ) )  -> 
( ( F `  w ) R ( G `  w ) )  =  ( ( G `  w ) R ( F `  w ) ) )
85, 7syldan 276 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R ( G `
 w ) )  =  ( ( G `
 w ) R ( F `  w
) ) )
98mpteq2dva 3868 . 2  |-  ( ph  ->  ( w  e.  A  |->  ( ( F `  w ) R ( G `  w ) ) )  =  ( w  e.  A  |->  ( ( G `  w
) R ( F `
 w ) ) ) )
10 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
111feqmptd 5247 . . 3  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
123feqmptd 5247 . . 3  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
1310, 2, 4, 11, 12offval2 5746 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( w  e.  A  |->  ( ( F `  w ) R ( G `  w ) ) ) )
1410, 4, 2, 12, 11offval2 5746 . 2  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) ) )
159, 13, 143eqtr4d 2123 1  |-  ( ph  ->  ( F  oF R G )  =  ( G  oF R F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433    |-> cmpt 3839   -->wf 4918   ` cfv 4922  (class class class)co 5532    oFcof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator