ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofinvl Unicode version

Theorem caofinvl 5753
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofinv.3  |-  ( ph  ->  B  e.  W )
caofinv.4  |-  ( ph  ->  N : S --> S )
caofinv.5  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
caofinvl.6  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
Assertion
Ref Expression
caofinvl  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Distinct variable groups:    x, B    x, F    x, G    ph, x    x, R    x, S    v, A    v, F, x    x, N, v    v, S    ph, v
Allowed substitution hints:    A( x)    B( v)    R( v)    G( v)    V( x, v)    W( x, v)

Proof of Theorem caofinvl
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4  |-  ( ph  ->  A  e.  V )
2 caofinv.4 . . . . . . . . 9  |-  ( ph  ->  N : S --> S )
32adantr 270 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  N : S --> S )
4 caofref.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> S )
54ffvelrnda 5323 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  v )  e.  S )
63, 5ffvelrnd 5324 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( N `  ( F `  v ) )  e.  S )
7 eqid 2081 . . . . . . 7  |-  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  =  ( v  e.  A  |->  ( N `  ( F `  v ) ) )
86, 7fmptd 5343 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S )
9 caofinv.5 . . . . . . 7  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
109feq1d 5054 . . . . . 6  |-  ( ph  ->  ( G : A --> S 
<->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S ) )
118, 10mpbird 165 . . . . 5  |-  ( ph  ->  G : A --> S )
1211ffvelrnda 5323 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
134ffvelrnda 5323 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
146ralrimiva 2434 . . . . . . 7  |-  ( ph  ->  A. v  e.  A  ( N `  ( F `
 v ) )  e.  S )
157fnmpt 5045 . . . . . . 7  |-  ( A. v  e.  A  ( N `  ( F `  v ) )  e.  S  ->  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  Fn  A )
1614, 15syl 14 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) )  Fn  A
)
179fneq1d 5009 . . . . . 6  |-  ( ph  ->  ( G  Fn  A  <->  ( v  e.  A  |->  ( N `  ( F `
 v ) ) )  Fn  A ) )
1816, 17mpbird 165 . . . . 5  |-  ( ph  ->  G  Fn  A )
19 dffn5im 5240 . . . . 5  |-  ( G  Fn  A  ->  G  =  ( w  e.  A  |->  ( G `  w ) ) )
2018, 19syl 14 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
214feqmptd 5247 . . . 4  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
221, 12, 13, 20, 21offval2 5746 . . 3  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) ) )
239fveq1d 5200 . . . . . . . 8  |-  ( ph  ->  ( G `  w
)  =  ( ( v  e.  A  |->  ( N `  ( F `
 v ) ) ) `  w ) )
2423adantr 270 . . . . . . 7  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) `
 w ) )
25 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  A )
262adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  A )  ->  N : S --> S )
2726, 13ffvelrnd 5324 . . . . . . . 8  |-  ( (
ph  /\  w  e.  A )  ->  ( N `  ( F `  w ) )  e.  S )
28 fveq2 5198 . . . . . . . . . 10  |-  ( v  =  w  ->  ( F `  v )  =  ( F `  w ) )
2928fveq2d 5202 . . . . . . . . 9  |-  ( v  =  w  ->  ( N `  ( F `  v ) )  =  ( N `  ( F `  w )
) )
3029, 7fvmptg 5269 . . . . . . . 8  |-  ( ( w  e.  A  /\  ( N `  ( F `
 w ) )  e.  S )  -> 
( ( v  e.  A  |->  ( N `  ( F `  v ) ) ) `  w
)  =  ( N `
 ( F `  w ) ) )
3125, 27, 30syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  w  e.  A )  ->  (
( v  e.  A  |->  ( N `  ( F `  v )
) ) `  w
)  =  ( N `
 ( F `  w ) ) )
3224, 31eqtrd 2113 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( N `  ( F `  w ) ) )
3332oveq1d 5547 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
34 caofinvl.6 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
3534ralrimiva 2434 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
3635adantr 270 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
37 fveq2 5198 . . . . . . . . 9  |-  ( x  =  ( F `  w )  ->  ( N `  x )  =  ( N `  ( F `  w ) ) )
38 id 19 . . . . . . . . 9  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
3937, 38oveq12d 5550 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  (
( N `  x
) R x )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
4039eqeq1d 2089 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( ( N `  x ) R x )  =  B  <->  ( ( N `  ( F `  w ) ) R ( F `  w
) )  =  B ) )
4140rspcva 2699 . . . . . 6  |-  ( ( ( F `  w
)  e.  S  /\  A. x  e.  S  ( ( N `  x
) R x )  =  B )  -> 
( ( N `  ( F `  w ) ) R ( F `
 w ) )  =  B )
4213, 36, 41syl2anc 403 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( N `  ( F `  w )
) R ( F `
 w ) )  =  B )
4333, 42eqtrd 2113 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  B )
4443mpteq2dva 3868 . . 3  |-  ( ph  ->  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) )  =  ( w  e.  A  |->  B ) )
4522, 44eqtrd 2113 . 2  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  B ) )
46 fconstmpt 4405 . 2  |-  ( A  X.  { B }
)  =  ( w  e.  A  |->  B )
4745, 46syl6eqr 2131 1  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   {csn 3398    |-> cmpt 3839    X. cxp 4361    Fn wfn 4917   -->wf 4918   ` cfv 4922  (class class class)co 5532    oFcof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator