| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofinvl | Unicode version | ||
| Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 |
|
| caofref.2 |
|
| caofinv.3 |
|
| caofinv.4 |
|
| caofinv.5 |
|
| caofinvl.6 |
|
| Ref | Expression |
|---|---|
| caofinvl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 |
. . . 4
| |
| 2 | caofinv.4 |
. . . . . . . . 9
| |
| 3 | 2 | adantr 270 |
. . . . . . . 8
|
| 4 | caofref.2 |
. . . . . . . . 9
| |
| 5 | 4 | ffvelrnda 5323 |
. . . . . . . 8
|
| 6 | 3, 5 | ffvelrnd 5324 |
. . . . . . 7
|
| 7 | eqid 2081 |
. . . . . . 7
| |
| 8 | 6, 7 | fmptd 5343 |
. . . . . 6
|
| 9 | caofinv.5 |
. . . . . . 7
| |
| 10 | 9 | feq1d 5054 |
. . . . . 6
|
| 11 | 8, 10 | mpbird 165 |
. . . . 5
|
| 12 | 11 | ffvelrnda 5323 |
. . . 4
|
| 13 | 4 | ffvelrnda 5323 |
. . . 4
|
| 14 | 6 | ralrimiva 2434 |
. . . . . . 7
|
| 15 | 7 | fnmpt 5045 |
. . . . . . 7
|
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 9 | fneq1d 5009 |
. . . . . 6
|
| 18 | 16, 17 | mpbird 165 |
. . . . 5
|
| 19 | dffn5im 5240 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 4 | feqmptd 5247 |
. . . 4
|
| 22 | 1, 12, 13, 20, 21 | offval2 5746 |
. . 3
|
| 23 | 9 | fveq1d 5200 |
. . . . . . . 8
|
| 24 | 23 | adantr 270 |
. . . . . . 7
|
| 25 | simpr 108 |
. . . . . . . 8
| |
| 26 | 2 | adantr 270 |
. . . . . . . . 9
|
| 27 | 26, 13 | ffvelrnd 5324 |
. . . . . . . 8
|
| 28 | fveq2 5198 |
. . . . . . . . . 10
| |
| 29 | 28 | fveq2d 5202 |
. . . . . . . . 9
|
| 30 | 29, 7 | fvmptg 5269 |
. . . . . . . 8
|
| 31 | 25, 27, 30 | syl2anc 403 |
. . . . . . 7
|
| 32 | 24, 31 | eqtrd 2113 |
. . . . . 6
|
| 33 | 32 | oveq1d 5547 |
. . . . 5
|
| 34 | caofinvl.6 |
. . . . . . . 8
| |
| 35 | 34 | ralrimiva 2434 |
. . . . . . 7
|
| 36 | 35 | adantr 270 |
. . . . . 6
|
| 37 | fveq2 5198 |
. . . . . . . . 9
| |
| 38 | id 19 |
. . . . . . . . 9
| |
| 39 | 37, 38 | oveq12d 5550 |
. . . . . . . 8
|
| 40 | 39 | eqeq1d 2089 |
. . . . . . 7
|
| 41 | 40 | rspcva 2699 |
. . . . . 6
|
| 42 | 13, 36, 41 | syl2anc 403 |
. . . . 5
|
| 43 | 33, 42 | eqtrd 2113 |
. . . 4
|
| 44 | 43 | mpteq2dva 3868 |
. . 3
|
| 45 | 22, 44 | eqtrd 2113 |
. 2
|
| 46 | fconstmpt 4405 |
. 2
| |
| 47 | 45, 46 | syl6eqr 2131 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-of 5732 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |