ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval2 Unicode version

Theorem offval2 5746
Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1  |-  ( ph  ->  A  e.  V )
offval2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
offval2.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
offval2.4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
offval2.5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
Assertion
Ref Expression
offval2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
Distinct variable groups:    x, A    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    F( x)    G( x)    V( x)    W( x)    X( x)

Proof of Theorem offval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
21ralrimiva 2434 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  W )
3 eqid 2081 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5045 . . . . 5  |-  ( A. x  e.  A  B  e.  W  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 offval2.4 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5009 . . . 4  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 165 . . 3  |-  ( ph  ->  F  Fn  A )
9 offval2.3 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
109ralrimiva 2434 . . . . 5  |-  ( ph  ->  A. x  e.  A  C  e.  X )
11 eqid 2081 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1211fnmpt 5045 . . . . 5  |-  ( A. x  e.  A  C  e.  X  ->  ( x  e.  A  |->  C )  Fn  A )
1310, 12syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  Fn  A
)
14 offval2.5 . . . . 5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
1514fneq1d 5009 . . . 4  |-  ( ph  ->  ( G  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
1613, 15mpbird 165 . . 3  |-  ( ph  ->  G  Fn  A )
17 offval2.1 . . 3  |-  ( ph  ->  A  e.  V )
18 inidm 3175 . . 3  |-  ( A  i^i  A )  =  A
196adantr 270 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  F  =  ( x  e.  A  |->  B ) )
2019fveq1d 5200 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( ( x  e.  A  |->  B ) `
 y ) )
2114adantr 270 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  G  =  ( x  e.  A  |->  C ) )
2221fveq1d 5200 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( G `  y )  =  ( ( x  e.  A  |->  C ) `
 y ) )
238, 16, 17, 17, 18, 20, 22offval 5739 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) ) ) )
24 nffvmpt1 5206 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
25 nfcv 2219 . . . . 5  |-  F/_ x R
26 nffvmpt1 5206 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  C ) `  y )
2724, 25, 26nfov 5555 . . . 4  |-  F/_ x
( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) )
28 nfcv 2219 . . . 4  |-  F/_ y
( ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) )
29 fveq2 5198 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
30 fveq2 5198 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  C ) `  y
)  =  ( ( x  e.  A  |->  C ) `  x ) )
3129, 30oveq12d 5550 . . . 4  |-  ( y  =  x  ->  (
( ( x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `  y
) )  =  ( ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) ) )
3227, 28, 31cbvmpt 3872 . . 3  |-  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `  y
) R ( ( x  e.  A  |->  C ) `  y ) ) )  =  ( x  e.  A  |->  ( ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) ) )
33 simpr 108 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
343fvmpt2 5275 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  W )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
3533, 1, 34syl2anc 403 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
3611fvmpt2 5275 . . . . . 6  |-  ( ( x  e.  A  /\  C  e.  X )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
3733, 9, 36syl2anc 403 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
3835, 37oveq12d 5550 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) )  =  ( B R C ) )
3938mpteq2dva 3868 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) ) )  =  ( x  e.  A  |->  ( B R C ) ) )
4032, 39syl5eq 2125 . 2  |-  ( ph  ->  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) ) )  =  ( x  e.  A  |->  ( B R C ) ) )
4123, 40eqtrd 2113 1  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348    |-> cmpt 3839    Fn wfn 4917   ` cfv 4922  (class class class)co 5532    oFcof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by:  ofc12  5751  caofinvl  5753  caofcom  5754
  Copyright terms: Public domain W3C validator