ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl Unicode version

Theorem cardcl 6450
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Distinct variable group:    y, A

Proof of Theorem cardcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-card 6449 . . . 4  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
21a1i 9 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
) )
3 breq2 3789 . . . . . 6  |-  ( x  =  A  ->  (
y  ~~  x  <->  y  ~~  A ) )
43rabbidv 2593 . . . . 5  |-  ( x  =  A  ->  { y  e.  On  |  y 
~~  x }  =  { y  e.  On  |  y  ~~  A }
)
54inteqd 3641 . . . 4  |-  ( x  =  A  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
65adantl 271 . . 3  |-  ( ( E. y  e.  On  y  ~~  A  /\  x  =  A )  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
7 encv 6250 . . . . 5  |-  ( y 
~~  A  ->  (
y  e.  _V  /\  A  e.  _V )
)
87simprd 112 . . . 4  |-  ( y 
~~  A  ->  A  e.  _V )
98rexlimivw 2473 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  A  e. 
_V )
10 intexrabim 3928 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
112, 6, 9, 10fvmptd 5274 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
12 onintrab2im 4262 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  On )
1311, 12eqeltrd 2155 1  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433   E.wrex 2349   {crab 2352   _Vcvv 2601   |^|cint 3636   class class class wbr 3785    |-> cmpt 3839   Oncon0 4118   ` cfv 4922    ~~ cen 6242   cardccrd 6448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-en 6245  df-card 6449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator