ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintrab2im Unicode version

Theorem onintrab2im 4262
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintrab2im  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )

Proof of Theorem onintrab2im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3079 . 2  |-  { x  e.  On  |  ph }  C_  On
2 nfrab1 2533 . . . . 5  |-  F/_ x { x  e.  On  |  ph }
32nfcri 2213 . . . 4  |-  F/ x  y  e.  { x  e.  On  |  ph }
43nfex 1568 . . 3  |-  F/ x E. y  y  e.  { x  e.  On  |  ph }
5 rabid 2529 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  <->  ( x  e.  On  /\  ph ) )
6 elex2 2615 . . . . 5  |-  ( x  e.  { x  e.  On  |  ph }  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
75, 6sylbir 133 . . . 4  |-  ( ( x  e.  On  /\  ph )  ->  E. y 
y  e.  { x  e.  On  |  ph }
)
87ex 113 . . 3  |-  ( x  e.  On  ->  ( ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } ) )
94, 8rexlimi 2470 . 2  |-  ( E. x  e.  On  ph  ->  E. y  y  e. 
{ x  e.  On  |  ph } )
10 onintonm 4261 . 2  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
E. y  y  e. 
{ x  e.  On  |  ph } )  ->  |^| { x  e.  On  |  ph }  e.  On )
111, 9, 10sylancr 405 1  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1421    e. wcel 1433   E.wrex 2349   {crab 2352    C_ wss 2973   |^|cint 3636   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by:  cardcl  6450
  Copyright terms: Public domain W3C validator