ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem1 Unicode version

Theorem cauappcvgprlem1 6849
Description: Lemma for cauappcvgpr 6852. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlem.q  |-  ( ph  ->  Q  e.  Q. )
cauappcvgprlem.r  |-  ( ph  ->  R  e.  Q. )
Assertion
Ref Expression
cauappcvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, p, q, l, u    Q, p, q, l, u    R, p, q, l, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlem1
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.r . . . . 5  |-  ( ph  ->  R  e.  Q. )
2 halfnqq 6600 . . . . 5  |-  ( R  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  R )
31, 2syl 14 . . . 4  |-  ( ph  ->  E. x  e.  Q.  ( x  +Q  x
)  =  R )
4 simprl 497 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  x  e.  Q. )
5 cauappcvgpr.app . . . . . . . . . . 11  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
65adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
7 cauappcvgprlem.q . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  Q. )
87adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  Q  e.  Q. )
9 fveq2 5198 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  ( F `  p )  =  ( F `  Q ) )
10 oveq1 5539 . . . . . . . . . . . . . . 15  |-  ( p  =  Q  ->  (
p  +Q  q )  =  ( Q  +Q  q ) )
1110oveq2d 5548 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  q
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 q )  +Q  ( Q  +Q  q
) ) )
129, 11breq12d 3798 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) ) ) )
139, 10oveq12d 5550 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  p
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  q
) ) )
1413breq2d 3797 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  q
)  <Q  ( ( F `
 p )  +Q  ( p  +Q  q
) )  <->  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) )
1512, 14anbi12d 456 . . . . . . . . . . . 12  |-  ( p  =  Q  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  q )  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) ) )
16 fveq2 5198 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( F `  q )  =  ( F `  x ) )
17 oveq2 5540 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( Q  +Q  q )  =  ( Q  +Q  x
) )
1816, 17oveq12d 5550 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
1918breq2d 3797 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  Q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) ) ) )
2017oveq2d 5548 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  x
) ) )
2116, 20breq12d 3798 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  q
)  <Q  ( ( F `
 Q )  +Q  ( Q  +Q  q
) )  <->  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2219, 21anbi12d 456 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
( ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
2315, 22rspc2v 2713 . . . . . . . . . . 11  |-  ( ( Q  e.  Q.  /\  x  e.  Q. )  ->  ( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
248, 4, 23syl2anc 403 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
256, 24mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2625simpld 110 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
27 cauappcvgpr.f . . . . . . . . . . 11  |-  ( ph  ->  F : Q. --> Q. )
2827adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  F : Q. --> Q. )
2928, 4ffvelrnd 5324 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  x
)  e.  Q. )
30 addassnqg 6572 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  x  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  x )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
3129, 8, 4, 30syl3anc 1169 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  x ) ) )
3226, 31breqtrrd 3811 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( ( F `  x )  +Q  Q )  +Q  x ) )
33 ltanqg 6590 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3433adantl 271 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
3527, 7ffvelrnd 5324 . . . . . . . . 9  |-  ( ph  ->  ( F `  Q
)  e.  Q. )
3635adantr 270 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  e.  Q. )
37 addclnq 6565 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( F `  x )  +Q  Q
)  e.  Q. )
3829, 8, 37syl2anc 403 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  x )  +Q  Q
)  e.  Q. )
39 addclnq 6565 . . . . . . . . 9  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
4038, 4, 39syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
41 addcomnqg 6571 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4241adantl 271 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
4334, 36, 40, 4, 42caovord2d 5690 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( ( F `  x )  +Q  Q
)  +Q  x )  <-> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) ) )
4432, 43mpbid 145 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) )
45 addassnqg 6572 . . . . . . . 8  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q.  /\  x  e.  Q. )  ->  (
( ( ( F `
 x )  +Q  Q )  +Q  x
)  +Q  x )  =  ( ( ( F `  x )  +Q  Q )  +Q  ( x  +Q  x
) ) )
4638, 4, 4, 45syl3anc 1169 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( ( F `  x
)  +Q  Q )  +Q  ( x  +Q  x ) ) )
47 simprr 498 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( x  +Q  x
)  =  R )
4847oveq2d 5548 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  (
x  +Q  x ) )  =  ( ( ( F `  x
)  +Q  Q )  +Q  R ) )
491adantr 270 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  R  e.  Q. )
50 addassnqg 6572 . . . . . . . 8  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  R  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  R )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5129, 8, 49, 50syl3anc 1169 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  R
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5246, 48, 513eqtrd 2117 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5344, 52breqtrd 3809 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
54 oveq2 5540 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  q )  =  ( ( F `
 Q )  +Q  x ) )
5516oveq1d 5547 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  R ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5654, 55breq12d 3798 . . . . . 6  |-  ( q  =  x  ->  (
( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  x )  <Q  (
( F `  x
)  +Q  ( Q  +Q  R ) ) ) )
5756rspcev 2701 . . . . 5  |-  ( ( x  e.  Q.  /\  ( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
584, 53, 57syl2anc 403 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
593, 58rexlimddv 2481 . . 3  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
60 cauappcvgpr.bnd . . . . . . . 8  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
61 cauappcvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
62 addclnq 6565 . . . . . . . . 9  |-  ( ( Q  e.  Q.  /\  R  e.  Q. )  ->  ( Q  +Q  R
)  e.  Q. )
637, 1, 62syl2anc 403 . . . . . . . 8  |-  ( ph  ->  ( Q  +Q  R
)  e.  Q. )
6427, 5, 60, 61, 63cauappcvgprlemladd 6848 . . . . . . 7  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
6564fveq2d 5202 . . . . . 6  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
)
66 nqex 6553 . . . . . . . 8  |-  Q.  e.  _V
6766rabex 3922 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  e.  _V
6866rabex 3922 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u }  e.  _V
6967, 68op1st 5793 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }
7065, 69syl6eq 2129 . . . . 5  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } )
7170eleq2d 2148 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ) )
72 oveq1 5539 . . . . . . . 8  |-  ( l  =  ( F `  Q )  ->  (
l  +Q  q )  =  ( ( F `
 Q )  +Q  q ) )
7372breq1d 3795 . . . . . . 7  |-  ( l  =  ( F `  Q )  ->  (
( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7473rexbidv 2369 . . . . . 6  |-  ( l  =  ( F `  Q )  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7574elrab3 2750 . . . . 5  |-  ( ( F `  Q )  e.  Q.  ->  (
( F `  Q
)  e.  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  <->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) ) )
7635, 75syl 14 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7771, 76bitrd 186 . . 3  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7859, 77mpbird 165 . 2  |-  ( ph  ->  ( F `  Q
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
7927, 5, 60, 61cauappcvgprlemcl 6843 . . . 4  |-  ( ph  ->  L  e.  P. )
80 nqprlu 6737 . . . . 5  |-  ( ( Q  +Q  R )  e.  Q.  ->  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >.  e. 
P. )
8163, 80syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )
82 addclpr 6727 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
8379, 81, 82syl2anc 403 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
84 nqprl 6741 . . 3  |-  ( ( ( F `  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >. )  e.  P. )  -> 
( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8535, 83, 84syl2anc 403 . 2  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8678, 85mpbid 145 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   {crab 2352   <.cop 3401   class class class wbr 3785   -->wf 4918   ` cfv 4922  (class class class)co 5532   1stc1st 5785   Q.cnq 6470    +Q cplq 6472    <Q cltq 6475   P.cnp 6481    +P. cpp 6483    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660
This theorem is referenced by:  cauappcvgprlemlim  6851
  Copyright terms: Public domain W3C validator