| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptfvex | Unicode version | ||
| Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 |
|
| Ref | Expression |
|---|---|
| mptfvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 2911 |
. . 3
| |
| 2 | fvmpt2.1 |
. . . 4
| |
| 3 | nfcv 2219 |
. . . . 5
| |
| 4 | nfcsb1v 2938 |
. . . . 5
| |
| 5 | csbeq1a 2916 |
. . . . 5
| |
| 6 | 3, 4, 5 | cbvmpt 3872 |
. . . 4
|
| 7 | 2, 6 | eqtri 2101 |
. . 3
|
| 8 | 1, 7 | fvmptss2 5268 |
. 2
|
| 9 | elex 2610 |
. . . . . 6
| |
| 10 | 9 | alimi 1384 |
. . . . 5
|
| 11 | 3 | nfel1 2229 |
. . . . . 6
|
| 12 | 4 | nfel1 2229 |
. . . . . 6
|
| 13 | 5 | eleq1d 2147 |
. . . . . 6
|
| 14 | 11, 12, 13 | cbval 1677 |
. . . . 5
|
| 15 | 10, 14 | sylib 120 |
. . . 4
|
| 16 | 1 | eleq1d 2147 |
. . . . 5
|
| 17 | 16 | spcgv 2685 |
. . . 4
|
| 18 | 15, 17 | syl5 32 |
. . 3
|
| 19 | 18 | impcom 123 |
. 2
|
| 20 | ssexg 3917 |
. 2
| |
| 21 | 8, 19, 20 | sylancr 405 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-iota 4887 df-fun 4924 df-fv 4930 |
| This theorem is referenced by: mpt2fvex 5849 xpcomco 6323 |
| Copyright terms: Public domain | W3C validator |