ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvoprab Unicode version

Theorem cnvoprab 5875
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
cnvoprab.x  |-  F/ x ps
cnvoprab.y  |-  F/ y ps
cnvoprab.1  |-  ( a  =  <. x ,  y
>.  ->  ( ps  <->  ph ) )
cnvoprab.2  |-  ( ps 
->  a  e.  ( _V  X.  _V ) )
Assertion
Ref Expression
cnvoprab  |-  `' { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. z ,  a >.  |  ps }
Distinct variable groups:    x, a, y, z    ph, a
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z, a)

Proof of Theorem cnvoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 excom 1594 . . . . . 6  |-  ( E. a E. z ( w  =  <. a ,  z >.  /\  ps ) 
<->  E. z E. a
( w  =  <. a ,  z >.  /\  ps ) )
2 nfv 1461 . . . . . . . . . . 11  |-  F/ x  w  =  <. a ,  z >.
3 cnvoprab.x . . . . . . . . . . 11  |-  F/ x ps
42, 3nfan 1497 . . . . . . . . . 10  |-  F/ x
( w  =  <. a ,  z >.  /\  ps )
54nfex 1568 . . . . . . . . 9  |-  F/ x E. a ( w  = 
<. a ,  z >.  /\  ps )
6 nfv 1461 . . . . . . . . . . . 12  |-  F/ y  w  =  <. a ,  z >.
7 cnvoprab.y . . . . . . . . . . . 12  |-  F/ y ps
86, 7nfan 1497 . . . . . . . . . . 11  |-  F/ y ( w  =  <. a ,  z >.  /\  ps )
98nfex 1568 . . . . . . . . . 10  |-  F/ y E. a ( w  =  <. a ,  z
>.  /\  ps )
10 vex 2604 . . . . . . . . . . . 12  |-  x  e. 
_V
11 vex 2604 . . . . . . . . . . . 12  |-  y  e. 
_V
1210, 11opex 3984 . . . . . . . . . . 11  |-  <. x ,  y >.  e.  _V
13 opeq1 3570 . . . . . . . . . . . . 13  |-  ( a  =  <. x ,  y
>.  ->  <. a ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
1413eqeq2d 2092 . . . . . . . . . . . 12  |-  ( a  =  <. x ,  y
>.  ->  ( w  = 
<. a ,  z >.  <->  w  =  <. <. x ,  y
>. ,  z >. ) )
15 cnvoprab.1 . . . . . . . . . . . 12  |-  ( a  =  <. x ,  y
>.  ->  ( ps  <->  ph ) )
1614, 15anbi12d 456 . . . . . . . . . . 11  |-  ( a  =  <. x ,  y
>.  ->  ( ( w  =  <. a ,  z
>.  /\  ps )  <->  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) ) )
1712, 16spcev 2692 . . . . . . . . . 10  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. a ( w  = 
<. a ,  z >.  /\  ps ) )
189, 17exlimi 1525 . . . . . . . . 9  |-  ( E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. a
( w  =  <. a ,  z >.  /\  ps ) )
195, 18exlimi 1525 . . . . . . . 8  |-  ( E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. a ( w  = 
<. a ,  z >.  /\  ps ) )
20 cnvoprab.2 . . . . . . . . . . 11  |-  ( ps 
->  a  e.  ( _V  X.  _V ) )
2120adantl 271 . . . . . . . . . 10  |-  ( ( w  =  <. a ,  z >.  /\  ps )  ->  a  e.  ( _V  X.  _V )
)
22 vex 2604 . . . . . . . . . . . 12  |-  a  e. 
_V
23 1stexg 5814 . . . . . . . . . . . 12  |-  ( a  e.  _V  ->  ( 1st `  a )  e. 
_V )
2422, 23ax-mp 7 . . . . . . . . . . 11  |-  ( 1st `  a )  e.  _V
25 2ndexg 5815 . . . . . . . . . . . 12  |-  ( a  e.  _V  ->  ( 2nd `  a )  e. 
_V )
2622, 25ax-mp 7 . . . . . . . . . . 11  |-  ( 2nd `  a )  e.  _V
27 eqcom 2083 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  a )  =  x  <->  x  =  ( 1st `  a ) )
28 eqcom 2083 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  a )  =  y  <->  y  =  ( 2nd `  a ) )
2927, 28anbi12i 447 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  a
)  =  x  /\  ( 2nd `  a )  =  y )  <->  ( x  =  ( 1st `  a
)  /\  y  =  ( 2nd `  a ) ) )
30 eqopi 5818 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  =  x  /\  ( 2nd `  a )  =  y ) )  ->  a  =  <. x ,  y >. )
3129, 30sylan2br 282 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  a )  /\  y  =  ( 2nd `  a
) ) )  -> 
a  =  <. x ,  y >. )
3216bicomd 139 . . . . . . . . . . . . 13  |-  ( a  =  <. x ,  y
>.  ->  ( ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  ( w  =  <. a ,  z
>.  /\  ps ) ) )
3331, 32syl 14 . . . . . . . . . . . 12  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  a )  /\  y  =  ( 2nd `  a
) ) )  -> 
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  ( w  =  <. a ,  z
>.  /\  ps ) ) )
344, 8, 33spc2ed 5874 . . . . . . . . . . 11  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  e.  _V  /\  ( 2nd `  a )  e.  _V ) )  ->  ( ( w  =  <. a ,  z
>.  /\  ps )  ->  E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) ) )
3524, 26, 34mpanr12 429 . . . . . . . . . 10  |-  ( a  e.  ( _V  X.  _V )  ->  ( ( w  =  <. a ,  z >.  /\  ps )  ->  E. x E. y
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) ) )
3621, 35mpcom 36 . . . . . . . . 9  |-  ( ( w  =  <. a ,  z >.  /\  ps )  ->  E. x E. y
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) )
3736exlimiv 1529 . . . . . . . 8  |-  ( E. a ( w  = 
<. a ,  z >.  /\  ps )  ->  E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
3819, 37impbii 124 . . . . . . 7  |-  ( E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  E. a
( w  =  <. a ,  z >.  /\  ps ) )
3938exbii 1536 . . . . . 6  |-  ( E. z E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z E. a ( w  = 
<. a ,  z >.  /\  ps ) )
40 exrot3 1620 . . . . . 6  |-  ( E. z E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
411, 39, 403bitr2ri 207 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. a E. z ( w  = 
<. a ,  z >.  /\  ps ) )
4241abbii 2194 . . . 4  |-  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }  =  { w  |  E. a E. z ( w  =  <. a ,  z
>.  /\  ps ) }
43 df-oprab 5536 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
44 df-opab 3840 . . . 4  |-  { <. a ,  z >.  |  ps }  =  { w  |  E. a E. z
( w  =  <. a ,  z >.  /\  ps ) }
4542, 43, 443eqtr4ri 2112 . . 3  |-  { <. a ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z
>.  |  ph }
4645cnveqi 4528 . 2  |-  `' { <. a ,  z >.  |  ps }  =  `' { <. <. x ,  y
>. ,  z >.  | 
ph }
47 cnvopab 4746 . 2  |-  `' { <. a ,  z >.  |  ps }  =  { <. z ,  a >.  |  ps }
4846, 47eqtr3i 2103 1  |-  `' { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. z ,  a >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   F/wnf 1389   E.wex 1421    e. wcel 1433   {cab 2067   _Vcvv 2601   <.cop 3401   {copab 3838    X. cxp 4361   `'ccnv 4362   ` cfv 4922   {coprab 5533   1stc1st 5785   2ndc2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-oprab 5536  df-1st 5787  df-2nd 5788
This theorem is referenced by:  f1od2  5876
  Copyright terms: Public domain W3C validator