| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvresima | Unicode version | ||
| Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvresima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 |
. . . 4
| |
| 2 | 1 | elima3 4695 |
. . 3
|
| 3 | 1 | elima3 4695 |
. . . . 5
|
| 4 | 3 | anbi1i 445 |
. . . 4
|
| 5 | elin 3155 |
. . . 4
| |
| 6 | vex 2604 |
. . . . . . . . . 10
| |
| 7 | 6, 1 | opelcnv 4535 |
. . . . . . . . 9
|
| 8 | 6 | opelres 4635 |
. . . . . . . . . 10
|
| 9 | 6, 1 | opelcnv 4535 |
. . . . . . . . . . 11
|
| 10 | 9 | anbi1i 445 |
. . . . . . . . . 10
|
| 11 | 8, 10 | bitr4i 185 |
. . . . . . . . 9
|
| 12 | 7, 11 | bitri 182 |
. . . . . . . 8
|
| 13 | 12 | anbi2i 444 |
. . . . . . 7
|
| 14 | anass 393 |
. . . . . . 7
| |
| 15 | 13, 14 | bitr4i 185 |
. . . . . 6
|
| 16 | 15 | exbii 1536 |
. . . . 5
|
| 17 | 19.41v 1823 |
. . . . 5
| |
| 18 | 16, 17 | bitri 182 |
. . . 4
|
| 19 | 4, 5, 18 | 3bitr4ri 211 |
. . 3
|
| 20 | 2, 19 | bitri 182 |
. 2
|
| 21 | 20 | eqriv 2078 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |