ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsym Unicode version

Theorem cnvsym 4728
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvsym  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
Distinct variable group:    x, y, R

Proof of Theorem cnvsym
StepHypRef Expression
1 alcom 1407 . 2  |-  ( A. y A. x ( <.
y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R
)  <->  A. x A. y
( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
2 relcnv 4723 . . 3  |-  Rel  `' R
3 ssrel 4446 . . 3  |-  ( Rel  `' R  ->  ( `' R  C_  R  <->  A. y A. x ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) ) )
42, 3ax-mp 7 . 2  |-  ( `' R  C_  R  <->  A. y A. x ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
5 vex 2604 . . . . . 6  |-  y  e. 
_V
6 vex 2604 . . . . . 6  |-  x  e. 
_V
75, 6brcnv 4536 . . . . 5  |-  ( y `' R x  <->  x R
y )
8 df-br 3786 . . . . 5  |-  ( y `' R x  <->  <. y ,  x >.  e.  `' R )
97, 8bitr3i 184 . . . 4  |-  ( x R y  <->  <. y ,  x >.  e.  `' R )
10 df-br 3786 . . . 4  |-  ( y R x  <->  <. y ,  x >.  e.  R
)
119, 10imbi12i 237 . . 3  |-  ( ( x R y  -> 
y R x )  <-> 
( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
12112albii 1400 . 2  |-  ( A. x A. y ( x R y  ->  y R x )  <->  A. x A. y ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
131, 4, 123bitr4i 210 1  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    e. wcel 1433    C_ wss 2973   <.cop 3401   class class class wbr 3785   `'ccnv 4362   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371
This theorem is referenced by:  dfer2  6130
  Copyright terms: Public domain W3C validator