![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvsym | GIF version |
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsym | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 1407 | . 2 ⊢ (∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) | |
2 | relcnv 4723 | . . 3 ⊢ Rel ◡𝑅 | |
3 | ssrel 4446 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅))) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
5 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | vex 2604 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 4536 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | df-br 3786 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 184 | . . . 4 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
10 | df-br 3786 | . . . 4 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝑅) | |
11 | 9, 10 | imbi12i 237 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ (〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
12 | 11 | 2albii 1400 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
13 | 1, 4, 12 | 3bitr4i 210 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 ∈ wcel 1433 ⊆ wss 2973 〈cop 3401 class class class wbr 3785 ◡ccnv 4362 Rel wrel 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 |
This theorem is referenced by: dfer2 6130 |
Copyright terms: Public domain | W3C validator |