ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelco Unicode version

Theorem opelco 4525
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1  |-  A  e. 
_V
opelco.2  |-  B  e. 
_V
Assertion
Ref Expression
opelco  |-  ( <. A ,  B >.  e.  ( C  o.  D
)  <->  E. x ( A D x  /\  x C B ) )
Distinct variable groups:    x, A    x, B    x, C    x, D

Proof of Theorem opelco
StepHypRef Expression
1 df-br 3786 . 2  |-  ( A ( C  o.  D
) B  <->  <. A ,  B >.  e.  ( C  o.  D ) )
2 opelco.1 . . 3  |-  A  e. 
_V
3 opelco.2 . . 3  |-  B  e. 
_V
42, 3brco 4524 . 2  |-  ( A ( C  o.  D
) B  <->  E. x
( A D x  /\  x C B ) )
51, 4bitr3i 184 1  |-  ( <. A ,  B >.  e.  ( C  o.  D
)  <->  E. x ( A D x  /\  x C B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1421    e. wcel 1433   _Vcvv 2601   <.cop 3401   class class class wbr 3785    o. ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-co 4372
This theorem is referenced by:  dmcoss  4619  dmcosseq  4621  cotr  4726  coiun  4850  co02  4854  coi1  4856  coass  4859  fmptco  5351  dftpos4  5901
  Copyright terms: Public domain W3C validator