ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfco2a Unicode version

Theorem dfco2a 4841
Description: Generalization of dfco2 4840, where  C can have any value between  dom  A  i^i  ran 
B and  _V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( A  o.  B )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem dfco2a
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 4840 . 2  |-  ( A  o.  B )  = 
U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )
2 vex 2604 . . . . . . . . . . . . . 14  |-  x  e. 
_V
3 vex 2604 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
43eliniseg 4715 . . . . . . . . . . . . . 14  |-  ( x  e.  _V  ->  (
z  e.  ( `' B " { x } )  <->  z B x ) )
52, 4ax-mp 7 . . . . . . . . . . . . 13  |-  ( z  e.  ( `' B " { x } )  <-> 
z B x )
63, 2brelrn 4585 . . . . . . . . . . . . 13  |-  ( z B x  ->  x  e.  ran  B )
75, 6sylbi 119 . . . . . . . . . . . 12  |-  ( z  e.  ( `' B " { x } )  ->  x  e.  ran  B )
8 vex 2604 . . . . . . . . . . . . . 14  |-  w  e. 
_V
92, 8elimasn 4712 . . . . . . . . . . . . 13  |-  ( w  e.  ( A " { x } )  <->  <. x ,  w >.  e.  A )
102, 8opeldm 4556 . . . . . . . . . . . . 13  |-  ( <.
x ,  w >.  e.  A  ->  x  e.  dom  A )
119, 10sylbi 119 . . . . . . . . . . . 12  |-  ( w  e.  ( A " { x } )  ->  x  e.  dom  A )
127, 11anim12ci 332 . . . . . . . . . . 11  |-  ( ( z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) )  ->  ( x  e. 
dom  A  /\  x  e.  ran  B ) )
1312adantl 271 . . . . . . . . . 10  |-  ( ( y  =  <. z ,  w >.  /\  (
z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) )  ->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
1413exlimivv 1817 . . . . . . . . 9  |-  ( E. z E. w ( y  =  <. z ,  w >.  /\  (
z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) )  ->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
15 elxp 4380 . . . . . . . . 9  |-  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. z E. w ( y  = 
<. z ,  w >.  /\  ( z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) ) )
16 elin 3155 . . . . . . . . 9  |-  ( x  e.  ( dom  A  i^i  ran  B )  <->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
1714, 15, 163imtr4i 199 . . . . . . . 8  |-  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  ->  x  e.  ( dom  A  i^i  ran 
B ) )
18 ssel 2993 . . . . . . . 8  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( x  e.  ( dom 
A  i^i  ran  B )  ->  x  e.  C
) )
1917, 18syl5 32 . . . . . . 7  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  ->  x  e.  C ) )
2019pm4.71rd 386 . . . . . 6  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  ( x  e.  C  /\  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) ) )
2120exbidv 1746 . . . . 5  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( E. x  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x ( x  e.  C  /\  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) ) )
22 rexv 2617 . . . . 5  |-  ( E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
23 df-rex 2354 . . . . 5  |-  ( E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x
( x  e.  C  /\  y  e.  (
( `' B " { x } )  X.  ( A " { x } ) ) ) )
2421, 22, 233bitr4g 221 . . . 4  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) )
25 eliun 3682 . . . 4  |-  ( y  e.  U_ x  e. 
_V  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
26 eliun 3682 . . . 4  |-  ( y  e.  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
2724, 25, 263bitr4g 221 . . 3  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  y  e.  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) )
2827eqrdv 2079 . 2  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  U_ x  e.  _V  (
( `' B " { x } )  X.  ( A " { x } ) )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
291, 28syl5eq 2125 1  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( A  o.  B )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   _Vcvv 2601    i^i cin 2972    C_ wss 2973   {csn 3398   <.cop 3401   U_ciun 3678   class class class wbr 3785    X. cxp 4361   `'ccnv 4362   dom cdm 4363   ran crn 4364   "cima 4366    o. ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-iun 3680  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator