| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftpos3 | Unicode version | ||
| Description: Alternate definition of
tpos when |
| Ref | Expression |
|---|---|
| dftpos3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 4723 |
. . . . . . . . . 10
| |
| 2 | dmtpos 5894 |
. . . . . . . . . . 11
| |
| 3 | 2 | releqd 4442 |
. . . . . . . . . 10
|
| 4 | 1, 3 | mpbiri 166 |
. . . . . . . . 9
|
| 5 | reltpos 5888 |
. . . . . . . . 9
| |
| 6 | 4, 5 | jctil 305 |
. . . . . . . 8
|
| 7 | relrelss 4864 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylib 120 |
. . . . . . 7
|
| 9 | 8 | sseld 2998 |
. . . . . 6
|
| 10 | elvvv 4421 |
. . . . . 6
| |
| 11 | 9, 10 | syl6ib 159 |
. . . . 5
|
| 12 | 11 | pm4.71rd 386 |
. . . 4
|
| 13 | 19.41vvv 1825 |
. . . . 5
| |
| 14 | eleq1 2141 |
. . . . . . . 8
| |
| 15 | df-br 3786 |
. . . . . . . . 9
| |
| 16 | vex 2604 |
. . . . . . . . . 10
| |
| 17 | vex 2604 |
. . . . . . . . . 10
| |
| 18 | vex 2604 |
. . . . . . . . . 10
| |
| 19 | brtposg 5892 |
. . . . . . . . . 10
| |
| 20 | 16, 17, 18, 19 | mp3an 1268 |
. . . . . . . . 9
|
| 21 | 15, 20 | bitr3i 184 |
. . . . . . . 8
|
| 22 | 14, 21 | syl6bb 194 |
. . . . . . 7
|
| 23 | 22 | pm5.32i 441 |
. . . . . 6
|
| 24 | 23 | 3exbii 1538 |
. . . . 5
|
| 25 | 13, 24 | bitr3i 184 |
. . . 4
|
| 26 | 12, 25 | syl6bb 194 |
. . 3
|
| 27 | 26 | abbi2dv 2197 |
. 2
|
| 28 | df-oprab 5536 |
. 2
| |
| 29 | 27, 28 | syl6eqr 2131 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-oprab 5536 df-tpos 5883 |
| This theorem is referenced by: tposoprab 5918 |
| Copyright terms: Public domain | W3C validator |