![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqr | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6eqr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6eqr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6eqr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6eqr.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2085 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | syl6eq 2129 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: 3eqtr4g 2138 rabxmdc 3276 relop 4504 csbcnvg 4537 dfiun3g 4607 dfiin3g 4608 resima2 4662 relcnvfld 4871 uniabio 4897 fntpg 4975 dffn5im 5240 dfimafn2 5244 fncnvima2 5309 fmptcof 5352 fcoconst 5355 fnasrng 5364 ffnov 5625 fnovim 5629 fnrnov 5666 foov 5667 funimassov 5670 ovelimab 5671 ofc12 5751 caofinvl 5753 dftpos3 5900 tfr0 5960 rdgisucinc 5995 oasuc 6067 ecinxp 6204 phplem1 6338 indpi 6532 nqnq0pi 6628 nq0m0r 6646 addnqpr1 6752 recexgt0sr 6950 recidpipr 7024 recidpirq 7026 axrnegex 7045 nntopi 7060 cnref1o 8733 fztp 9095 fseq1m1p1 9112 frecuzrdgrrn 9410 frecuzrdgsuc 9417 mulexpzap 9516 expaddzap 9520 bcp1m1 9692 cjexp 9780 rexuz3 9876 climconst 10129 eucalgval 10436 eucalginv 10438 eucalglt 10439 eucialgcvga 10440 eucialg 10441 sqpweven 10553 2sqpwodd 10554 |
Copyright terms: Public domain | W3C validator |