| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difelfzle | Unicode version | ||
| Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| Ref | Expression |
|---|---|
| difelfzle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 9130 |
. . . . 5
| |
| 2 | elfznn0 9130 |
. . . . 5
| |
| 3 | nn0z 8371 |
. . . . . . . . 9
| |
| 4 | nn0z 8371 |
. . . . . . . . 9
| |
| 5 | zsubcl 8392 |
. . . . . . . . 9
| |
| 6 | 3, 4, 5 | syl2anr 284 |
. . . . . . . 8
|
| 7 | 6 | adantr 270 |
. . . . . . 7
|
| 8 | nn0re 8297 |
. . . . . . . . 9
| |
| 9 | nn0re 8297 |
. . . . . . . . 9
| |
| 10 | subge0 7579 |
. . . . . . . . 9
| |
| 11 | 8, 9, 10 | syl2anr 284 |
. . . . . . . 8
|
| 12 | 11 | biimpar 291 |
. . . . . . 7
|
| 13 | 7, 12 | jca 300 |
. . . . . 6
|
| 14 | 13 | exp31 356 |
. . . . 5
|
| 15 | 1, 2, 14 | syl2im 38 |
. . . 4
|
| 16 | 15 | 3imp 1132 |
. . 3
|
| 17 | elnn0z 8364 |
. . 3
| |
| 18 | 16, 17 | sylibr 132 |
. 2
|
| 19 | elfz3nn0 9131 |
. . 3
| |
| 20 | 19 | 3ad2ant1 959 |
. 2
|
| 21 | elfz2nn0 9128 |
. . . . . 6
| |
| 22 | 8 | 3ad2ant1 959 |
. . . . . . . . 9
|
| 23 | resubcl 7372 |
. . . . . . . . 9
| |
| 24 | 22, 9, 23 | syl2an 283 |
. . . . . . . 8
|
| 25 | 22 | adantr 270 |
. . . . . . . 8
|
| 26 | nn0re 8297 |
. . . . . . . . . 10
| |
| 27 | 26 | 3ad2ant2 960 |
. . . . . . . . 9
|
| 28 | 27 | adantr 270 |
. . . . . . . 8
|
| 29 | nn0ge0 8313 |
. . . . . . . . . 10
| |
| 30 | 29 | adantl 271 |
. . . . . . . . 9
|
| 31 | subge02 7582 |
. . . . . . . . . 10
| |
| 32 | 22, 9, 31 | syl2an 283 |
. . . . . . . . 9
|
| 33 | 30, 32 | mpbid 145 |
. . . . . . . 8
|
| 34 | simpl3 943 |
. . . . . . . 8
| |
| 35 | 24, 25, 28, 33, 34 | letrd 7233 |
. . . . . . 7
|
| 36 | 35 | ex 113 |
. . . . . 6
|
| 37 | 21, 36 | sylbi 119 |
. . . . 5
|
| 38 | 1, 37 | syl5com 29 |
. . . 4
|
| 39 | 38 | a1dd 47 |
. . 3
|
| 40 | 39 | 3imp 1132 |
. 2
|
| 41 | elfz2nn0 9128 |
. 2
| |
| 42 | 18, 20, 40, 41 | syl3anbrc 1122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |