| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcosseq | Unicode version | ||
| Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcosseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4619 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | ssel 2993 |
. . . . . . . 8
| |
| 4 | vex 2604 |
. . . . . . . . . . 11
| |
| 5 | 4 | elrn 4595 |
. . . . . . . . . 10
|
| 6 | 4 | eldm 4550 |
. . . . . . . . . 10
|
| 7 | 5, 6 | imbi12i 237 |
. . . . . . . . 9
|
| 8 | 19.8a 1522 |
. . . . . . . . . . 11
| |
| 9 | 8 | imim1i 59 |
. . . . . . . . . 10
|
| 10 | pm3.2 137 |
. . . . . . . . . . 11
| |
| 11 | 10 | eximdv 1801 |
. . . . . . . . . 10
|
| 12 | 9, 11 | sylcom 28 |
. . . . . . . . 9
|
| 13 | 7, 12 | sylbi 119 |
. . . . . . . 8
|
| 14 | 3, 13 | syl 14 |
. . . . . . 7
|
| 15 | 14 | eximdv 1801 |
. . . . . 6
|
| 16 | excom 1594 |
. . . . . 6
| |
| 17 | 15, 16 | syl6ibr 160 |
. . . . 5
|
| 18 | vex 2604 |
. . . . . . 7
| |
| 19 | vex 2604 |
. . . . . . 7
| |
| 20 | 18, 19 | opelco 4525 |
. . . . . 6
|
| 21 | 20 | exbii 1536 |
. . . . 5
|
| 22 | 17, 21 | syl6ibr 160 |
. . . 4
|
| 23 | 18 | eldm 4550 |
. . . 4
|
| 24 | 18 | eldm2 4551 |
. . . 4
|
| 25 | 22, 23, 24 | 3imtr4g 203 |
. . 3
|
| 26 | 25 | ssrdv 3005 |
. 2
|
| 27 | 2, 26 | eqssd 3016 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 |
| This theorem is referenced by: dmcoeq 4622 fnco 5027 |
| Copyright terms: Public domain | W3C validator |