ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcoss Unicode version

Theorem dmcoss 4619
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss  |-  dom  ( A  o.  B )  C_ 
dom  B

Proof of Theorem dmcoss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 1425 . . . 4  |-  F/ y E. y  x B y
2 exsimpl 1548 . . . . 5  |-  ( E. z ( x B z  /\  z A y )  ->  E. z  x B z )
3 vex 2604 . . . . . 6  |-  x  e. 
_V
4 vex 2604 . . . . . 6  |-  y  e. 
_V
53, 4opelco 4525 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  <->  E. z ( x B z  /\  z A y ) )
6 breq2 3789 . . . . . 6  |-  ( y  =  z  ->  (
x B y  <->  x B
z ) )
76cbvexv 1836 . . . . 5  |-  ( E. y  x B y  <->  E. z  x B
z )
82, 5, 73imtr4i 199 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  ->  E. y  x B y )
91, 8exlimi 1525 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  o.  B )  ->  E. y  x B y )
103eldm2 4551 . . 3  |-  ( x  e.  dom  ( A  o.  B )  <->  E. y <. x ,  y >.  e.  ( A  o.  B
) )
113eldm 4550 . . 3  |-  ( x  e.  dom  B  <->  E. y  x B y )
129, 10, 113imtr4i 199 . 2  |-  ( x  e.  dom  ( A  o.  B )  ->  x  e.  dom  B )
1312ssriv 3003 1  |-  dom  ( A  o.  B )  C_ 
dom  B
Colors of variables: wff set class
Syntax hints:    /\ wa 102   E.wex 1421    e. wcel 1433    C_ wss 2973   <.cop 3401   class class class wbr 3785   dom cdm 4363    o. ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-co 4372  df-dm 4373
This theorem is referenced by:  rncoss  4620  dmcosseq  4621  cossxp  4863  funco  4960  cofunexg  5758
  Copyright terms: Public domain W3C validator