ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom2lem Unicode version

Theorem dom2lem 6275
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
Hypotheses
Ref Expression
dom2d.1  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
dom2d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
Assertion
Ref Expression
dom2lem  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem dom2lem
StepHypRef Expression
1 dom2d.1 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
21ralrimiv 2433 . . 3  |-  ( ph  ->  A. x  e.  A  C  e.  B )
3 eqid 2081 . . . 4  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
43fmpt 5340 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  ( x  e.  A  |->  C ) : A --> B )
52, 4sylib 120 . 2  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> B )
61imp 122 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
73fvmpt2 5275 . . . . . . . 8  |-  ( ( x  e.  A  /\  C  e.  B )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
87adantll 459 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  C  e.  B )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
96, 8mpdan 412 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
109adantrr 462 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( x  e.  A  |->  C ) `  x )  =  C )
11 nfv 1461 . . . . . . . 8  |-  F/ x
( ph  /\  y  e.  A )
12 nffvmpt1 5206 . . . . . . . . 9  |-  F/_ x
( ( x  e.  A  |->  C ) `  y )
1312nfeq1 2228 . . . . . . . 8  |-  F/ x
( ( x  e.  A  |->  C ) `  y )  =  D
1411, 13nfim 1504 . . . . . . 7  |-  F/ x
( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `  y )  =  D )
15 eleq1 2141 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1615anbi2d 451 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  y  e.  A ) ) )
1716imbi1d 229 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  A )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )  <->  ( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `
 x )  =  C ) ) )
1815anbi1d 452 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  A  /\  y  e.  A
)  <->  ( y  e.  A  /\  y  e.  A ) ) )
19 anidm 388 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  y  e.  A )  <->  y  e.  A )
2018, 19syl6bb 194 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( x  e.  A  /\  y  e.  A
)  <->  y  e.  A
) )
2120anbi2d 451 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  (
x  e.  A  /\  y  e.  A )
)  <->  ( ph  /\  y  e.  A )
) )
22 fveq2 5198 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x  e.  A  |->  C ) `  x
)  =  ( ( x  e.  A  |->  C ) `  y ) )
2322adantr 270 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  ( ph  /\  ( x  e.  A  /\  y  e.  A ) ) )  ->  ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y ) )
24 dom2d.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
2524imp 122 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( C  =  D  <-> 
x  =  y ) )
2625biimparc 293 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  ( ph  /\  ( x  e.  A  /\  y  e.  A ) ) )  ->  C  =  D )
2723, 26eqeq12d 2095 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  ( ph  /\  ( x  e.  A  /\  y  e.  A ) ) )  ->  ( ( ( x  e.  A  |->  C ) `  x )  =  C  <->  ( (
x  e.  A  |->  C ) `  y )  =  D ) )
2827ex 113 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
( x  e.  A  |->  C ) `  x
)  =  C  <->  ( (
x  e.  A  |->  C ) `  y )  =  D ) ) )
2921, 28sylbird 168 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ph  /\  y  e.  A )  ->  (
( ( x  e.  A  |->  C ) `  x )  =  C  <-> 
( ( x  e.  A  |->  C ) `  y )  =  D ) ) )
3029pm5.74d 180 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )  <->  ( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `
 y )  =  D ) ) )
3117, 30bitrd 186 . . . . . . 7  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  A )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )  <->  ( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `
 y )  =  D ) ) )
3214, 31, 9chvar 1680 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  (
( x  e.  A  |->  C ) `  y
)  =  D )
3332adantrl 461 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( x  e.  A  |->  C ) `  y )  =  D )
3410, 33eqeq12d 2095 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y )  <->  C  =  D ) )
3525biimpd 142 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( C  =  D  ->  x  =  y ) )
3634, 35sylbid 148 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y )  ->  x  =  y ) )
3736ralrimivva 2443 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y )  ->  x  =  y ) )
38 nfmpt1 3871 . . 3  |-  F/_ x
( x  e.  A  |->  C )
39 nfcv 2219 . . 3  |-  F/_ y
( x  e.  A  |->  C )
4038, 39dff13f 5430 . 2  |-  ( ( x  e.  A  |->  C ) : A -1-1-> B  <->  ( ( x  e.  A  |->  C ) : A --> B  /\  A. x  e.  A  A. y  e.  A  ( ( ( x  e.  A  |->  C ) `  x )  =  ( ( x  e.  A  |->  C ) `
 y )  ->  x  =  y )
) )
415, 37, 40sylanbrc 408 1  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348    |-> cmpt 3839   -->wf 4918   -1-1->wf1 4919   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fv 4930
This theorem is referenced by:  dom2d  6276  dom3d  6277
  Copyright terms: Public domain W3C validator