ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d Unicode version

Theorem dom3d 6277
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
dom2d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
dom3d.3  |-  ( ph  ->  A  e.  V )
dom3d.4  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
dom3d  |-  ( ph  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    V( x, y)    W( x, y)

Proof of Theorem dom3d
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
2 dom2d.2 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
31, 2dom2lem 6275 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
4 f1f 5112 . . . . 5  |-  ( ( x  e.  A  |->  C ) : A -1-1-> B  ->  ( x  e.  A  |->  C ) : A --> B )
53, 4syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> B )
6 dom3d.3 . . . 4  |-  ( ph  ->  A  e.  V )
7 dom3d.4 . . . 4  |-  ( ph  ->  B  e.  W )
8 fex2 5079 . . . 4  |-  ( ( ( x  e.  A  |->  C ) : A --> B  /\  A  e.  V  /\  B  e.  W
)  ->  ( x  e.  A  |->  C )  e.  _V )
95, 6, 7, 8syl3anc 1169 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  _V )
10 f1eq1 5107 . . . 4  |-  ( z  =  ( x  e.  A  |->  C )  -> 
( z : A -1-1-> B  <-> 
( x  e.  A  |->  C ) : A -1-1-> B ) )
1110spcegv 2686 . . 3  |-  ( ( x  e.  A  |->  C )  e.  _V  ->  ( ( x  e.  A  |->  C ) : A -1-1-> B  ->  E. z  z : A -1-1-> B ) )
129, 3, 11sylc 61 . 2  |-  ( ph  ->  E. z  z : A -1-1-> B )
13 brdomg 6252 . . 3  |-  ( B  e.  W  ->  ( A  ~<_  B  <->  E. z 
z : A -1-1-> B
) )
147, 13syl 14 . 2  |-  ( ph  ->  ( A  ~<_  B  <->  E. z 
z : A -1-1-> B
) )
1512, 14mpbird 165 1  |-  ( ph  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601   class class class wbr 3785    |-> cmpt 3839   -->wf 4918   -1-1->wf1 4919    ~<_ cdom 6243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fv 4930  df-dom 6246
This theorem is referenced by:  dom3  6279  xpdom2  6328  fopwdom  6333
  Copyright terms: Public domain W3C validator