| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnelirr | Unicode version | ||
| Description: A natural number does not belong to itself. Version of elirr 4284 for natural numbers, which does not require ax-setind 4280. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnelirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3255 |
. 2
| |
| 2 | df-suc 4126 |
. . . . . 6
| |
| 3 | 2 | eleq2i 2145 |
. . . . 5
|
| 4 | elun 3113 |
. . . . . 6
| |
| 5 | bj-nntrans 10746 |
. . . . . . . 8
| |
| 6 | sucssel 4179 |
. . . . . . . 8
| |
| 7 | 5, 6 | syld 44 |
. . . . . . 7
|
| 8 | vex 2604 |
. . . . . . . . . 10
| |
| 9 | 8 | sucid 4172 |
. . . . . . . . 9
|
| 10 | elsni 3416 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl5eleq 2167 |
. . . . . . . 8
|
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | 7, 12 | jaod 669 |
. . . . . 6
|
| 14 | 4, 13 | syl5bi 150 |
. . . . 5
|
| 15 | 3, 14 | syl5bi 150 |
. . . 4
|
| 16 | 15 | con3d 593 |
. . 3
|
| 17 | 16 | rgen 2416 |
. 2
|
| 18 | ax-bdel 10612 |
. . . 4
| |
| 19 | 18 | ax-bdn 10608 |
. . 3
|
| 20 | nfv 1461 |
. . 3
| |
| 21 | nfv 1461 |
. . 3
| |
| 22 | nfv 1461 |
. . 3
| |
| 23 | eleq1 2141 |
. . . . . 6
| |
| 24 | eleq2 2142 |
. . . . . 6
| |
| 25 | 23, 24 | bitrd 186 |
. . . . 5
|
| 26 | 25 | notbid 624 |
. . . 4
|
| 27 | 26 | biimprd 156 |
. . 3
|
| 28 | elequ1 1640 |
. . . . . 6
| |
| 29 | elequ2 1641 |
. . . . . 6
| |
| 30 | 28, 29 | bitrd 186 |
. . . . 5
|
| 31 | 30 | notbid 624 |
. . . 4
|
| 32 | 31 | biimpd 142 |
. . 3
|
| 33 | eleq1 2141 |
. . . . . 6
| |
| 34 | eleq2 2142 |
. . . . . 6
| |
| 35 | 33, 34 | bitrd 186 |
. . . . 5
|
| 36 | 35 | notbid 624 |
. . . 4
|
| 37 | 36 | biimprd 156 |
. . 3
|
| 38 | nfcv 2219 |
. . 3
| |
| 39 | nfv 1461 |
. . 3
| |
| 40 | eleq1 2141 |
. . . . . 6
| |
| 41 | eleq2 2142 |
. . . . . 6
| |
| 42 | 40, 41 | bitrd 186 |
. . . . 5
|
| 43 | 42 | notbid 624 |
. . . 4
|
| 44 | 43 | biimpd 142 |
. . 3
|
| 45 | 19, 20, 21, 22, 27, 32, 37, 38, 39, 44 | bj-bdfindisg 10743 |
. 2
|
| 46 | 1, 17, 45 | mp2an 416 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 ax-pr 3964 ax-un 4188 ax-bd0 10604 ax-bdor 10607 ax-bdn 10608 ax-bdal 10609 ax-bdex 10610 ax-bdeq 10611 ax-bdel 10612 ax-bdsb 10613 ax-bdsep 10675 ax-infvn 10736 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-suc 4126 df-iom 4332 df-bdc 10632 df-bj-ind 10722 |
| This theorem is referenced by: bj-nnen2lp 10749 |
| Copyright terms: Public domain | W3C validator |