| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fv3 | Unicode version | ||
| Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fv3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5196 |
. . 3
| |
| 2 | bi2 128 |
. . . . . . . . . 10
| |
| 3 | 2 | alimi 1384 |
. . . . . . . . 9
|
| 4 | vex 2604 |
. . . . . . . . . 10
| |
| 5 | breq2 3789 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ceqsalv 2629 |
. . . . . . . . 9
|
| 7 | 3, 6 | sylib 120 |
. . . . . . . 8
|
| 8 | 7 | anim2i 334 |
. . . . . . 7
|
| 9 | 8 | eximi 1531 |
. . . . . 6
|
| 10 | elequ2 1641 |
. . . . . . . 8
| |
| 11 | breq2 3789 |
. . . . . . . 8
| |
| 12 | 10, 11 | anbi12d 456 |
. . . . . . 7
|
| 13 | 12 | cbvexv 1836 |
. . . . . 6
|
| 14 | 9, 13 | sylib 120 |
. . . . 5
|
| 15 | exsimpr 1549 |
. . . . . 6
| |
| 16 | df-eu 1944 |
. . . . . 6
| |
| 17 | 15, 16 | sylibr 132 |
. . . . 5
|
| 18 | 14, 17 | jca 300 |
. . . 4
|
| 19 | nfeu1 1952 |
. . . . . . 7
| |
| 20 | nfv 1461 |
. . . . . . . . 9
| |
| 21 | nfa1 1474 |
. . . . . . . . 9
| |
| 22 | 20, 21 | nfan 1497 |
. . . . . . . 8
|
| 23 | 22 | nfex 1568 |
. . . . . . 7
|
| 24 | 19, 23 | nfim 1504 |
. . . . . 6
|
| 25 | bi1 116 |
. . . . . . . . . . . . . 14
| |
| 26 | ax-14 1445 |
. . . . . . . . . . . . . 14
| |
| 27 | 25, 26 | syl6 33 |
. . . . . . . . . . . . 13
|
| 28 | 27 | com23 77 |
. . . . . . . . . . . 12
|
| 29 | 28 | impd 251 |
. . . . . . . . . . 11
|
| 30 | 29 | sps 1470 |
. . . . . . . . . 10
|
| 31 | 30 | anc2ri 323 |
. . . . . . . . 9
|
| 32 | 31 | com12 30 |
. . . . . . . 8
|
| 33 | 32 | eximdv 1801 |
. . . . . . 7
|
| 34 | 16, 33 | syl5bi 150 |
. . . . . 6
|
| 35 | 24, 34 | exlimi 1525 |
. . . . 5
|
| 36 | 35 | imp 122 |
. . . 4
|
| 37 | 18, 36 | impbii 124 |
. . 3
|
| 38 | 1, 37 | bitri 182 |
. 2
|
| 39 | 38 | abbi2i 2193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |