ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz5 Unicode version

Theorem elfz5 9037
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
Assertion
Ref Expression
elfz5  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  K  <_  N ) )

Proof of Theorem elfz5
StepHypRef Expression
1 eluzelz 8628 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
2 eluzel2 8624 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2jca 300 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
4 elfz 9035 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
543expa 1138 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N
)  <->  ( M  <_  K  /\  K  <_  N
) ) )
63, 5sylan 277 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
7 eluzle 8631 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  <_  K )
87biantrurd 299 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  <_  N  <->  ( M  <_  K  /\  K  <_  N
) ) )
98adantr 270 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  <_  N  <->  ( M  <_  K  /\  K  <_  N ) ) )
106, 9bitr4d 189 1  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  K  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532    <_ cle 7154   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-cnex 7067  ax-resscn 7068
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-neg 7282  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  fzsplit2  9069  fznn0sub2  9139  ibcval5  9690
  Copyright terms: Public domain W3C validator