ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrealeu Unicode version

Theorem elrealeu 6998
Description: The real number mapping in elreal 6997 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
Assertion
Ref Expression
elrealeu  |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
Distinct variable group:    x, A

Proof of Theorem elrealeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elreal 6997 . . . 4  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
21biimpi 118 . . 3  |-  ( A  e.  RR  ->  E. x  e.  R.  <. x ,  0R >.  =  A )
3 eqtr3 2100 . . . . . . . 8  |-  ( (
<. x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  <. x ,  0R >.  =  <. y ,  0R >. )
4 0r 6927 . . . . . . . . . 10  |-  0R  e.  R.
5 opthg 3993 . . . . . . . . . 10  |-  ( ( x  e.  R.  /\  0R  e.  R. )  -> 
( <. x ,  0R >.  =  <. y ,  0R >.  <-> 
( x  =  y  /\  0R  =  0R ) ) )
64, 5mpan2 415 . . . . . . . . 9  |-  ( x  e.  R.  ->  ( <. x ,  0R >.  = 
<. y ,  0R >.  <->  (
x  =  y  /\  0R  =  0R )
) )
76ad2antlr 472 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  x  e.  R. )  /\  y  e.  R. )  ->  ( <. x ,  0R >.  =  <. y ,  0R >.  <->  ( x  =  y  /\  0R  =  0R ) ) )
83, 7syl5ib 152 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  x  e.  R. )  /\  y  e.  R. )  ->  ( ( <.
x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  ( x  =  y  /\  0R  =  0R ) ) )
9 simpl 107 . . . . . . 7  |-  ( ( x  =  y  /\  0R  =  0R )  ->  x  =  y )
108, 9syl6 33 . . . . . 6  |-  ( ( ( A  e.  RR  /\  x  e.  R. )  /\  y  e.  R. )  ->  ( ( <.
x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  x  =  y ) )
1110ralrimiva 2434 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  R. )  ->  A. y  e.  R.  ( ( <. x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A )  ->  x  =  y )
)
1211ralrimiva 2434 . . . 4  |-  ( A  e.  RR  ->  A. x  e.  R.  A. y  e. 
R.  ( ( <.
x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  x  =  y ) )
13 opeq1 3570 . . . . . 6  |-  ( x  =  y  ->  <. x ,  0R >.  =  <. y ,  0R >. )
1413eqeq1d 2089 . . . . 5  |-  ( x  =  y  ->  ( <. x ,  0R >.  =  A  <->  <. y ,  0R >.  =  A ) )
1514rmo4 2785 . . . 4  |-  ( E* x  e.  R.  <. x ,  0R >.  =  A  <->  A. x  e.  R.  A. y  e.  R.  (
( <. x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A )  ->  x  =  y ) )
1612, 15sylibr 132 . . 3  |-  ( A  e.  RR  ->  E* x  e.  R.  <. x ,  0R >.  =  A
)
17 reu5 2566 . . 3  |-  ( E! x  e.  R.  <. x ,  0R >.  =  A  <-> 
( E. x  e. 
R.  <. x ,  0R >.  =  A  /\  E* x  e.  R.  <. x ,  0R >.  =  A
) )
182, 16, 17sylanbrc 408 . 2  |-  ( A  e.  RR  ->  E! x  e.  R.  <. x ,  0R >.  =  A
)
19 reurex 2567 . . 3  |-  ( E! x  e.  R.  <. x ,  0R >.  =  A  ->  E. x  e.  R.  <.
x ,  0R >.  =  A )
2019, 1sylibr 132 . 2  |-  ( E! x  e.  R.  <. x ,  0R >.  =  A  ->  A  e.  RR )
2118, 20impbii 124 1  |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   E!wreu 2350   E*wrmo 2351   <.cop 3401   R.cnr 6487   0Rc0r 6488   RRcr 6980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656  df-i1p 6657  df-enr 6903  df-nr 6904  df-0r 6908  df-r 6991
This theorem is referenced by:  axcaucvglemcl  7061  axcaucvglemval  7063
  Copyright terms: Public domain W3C validator