ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreal2 Unicode version

Theorem elreal2 6999
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
elreal2  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )

Proof of Theorem elreal2
StepHypRef Expression
1 df-r 6991 . . 3  |-  RR  =  ( R.  X.  { 0R } )
21eleq2i 2145 . 2  |-  ( A  e.  RR  <->  A  e.  ( R.  X.  { 0R } ) )
3 xp1st 5812 . . . 4  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 1st `  A
)  e.  R. )
4 1st2nd2 5821 . . . . 5  |-  ( A  e.  ( R.  X.  { 0R } )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
5 xp2nd 5813 . . . . . . 7  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 2nd `  A
)  e.  { 0R } )
6 elsni 3416 . . . . . . 7  |-  ( ( 2nd `  A )  e.  { 0R }  ->  ( 2nd `  A
)  =  0R )
75, 6syl 14 . . . . . 6  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 2nd `  A
)  =  0R )
87opeq2d 3577 . . . . 5  |-  ( A  e.  ( R.  X.  { 0R } )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  A ) ,  0R >. )
94, 8eqtrd 2113 . . . 4  |-  ( A  e.  ( R.  X.  { 0R } )  ->  A  =  <. ( 1st `  A ) ,  0R >. )
103, 9jca 300 . . 3  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( ( 1st `  A
)  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
11 eleq1 2141 . . . . 5  |-  ( A  =  <. ( 1st `  A
) ,  0R >.  -> 
( A  e.  ( R.  X.  { 0R } )  <->  <. ( 1st `  A ) ,  0R >.  e.  ( R.  X.  { 0R } ) ) )
12 0r 6927 . . . . . . . 8  |-  0R  e.  R.
1312elexi 2611 . . . . . . 7  |-  0R  e.  _V
1413snid 3425 . . . . . 6  |-  0R  e.  { 0R }
15 opelxp 4392 . . . . . 6  |-  ( <.
( 1st `  A
) ,  0R >.  e.  ( R.  X.  { 0R } )  <->  ( ( 1st `  A )  e. 
R.  /\  0R  e.  { 0R } ) )
1614, 15mpbiran2 882 . . . . 5  |-  ( <.
( 1st `  A
) ,  0R >.  e.  ( R.  X.  { 0R } )  <->  ( 1st `  A )  e.  R. )
1711, 16syl6bb 194 . . . 4  |-  ( A  =  <. ( 1st `  A
) ,  0R >.  -> 
( A  e.  ( R.  X.  { 0R } )  <->  ( 1st `  A )  e.  R. ) )
1817biimparc 293 . . 3  |-  ( ( ( 1st `  A
)  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. )  ->  A  e.  ( R.  X.  { 0R } ) )
1910, 18impbii 124 . 2  |-  ( A  e.  ( R.  X.  { 0R } )  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
202, 19bitri 182 1  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {csn 3398   <.cop 3401    X. cxp 4361   ` cfv 4922   1stc1st 5785   2ndc2nd 5786   R.cnr 6487   0Rc0r 6488   RRcr 6980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656  df-i1p 6657  df-enr 6903  df-nr 6904  df-0r 6908  df-r 6991
This theorem is referenced by:  ltresr2  7008  axrnegex  7045
  Copyright terms: Public domain W3C validator