ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt2 Unicode version

Theorem elrnmpt2 5634
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
elrnmpt2.1  |-  C  e. 
_V
Assertion
Ref Expression
elrnmpt2  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Distinct variable groups:    y, A    x, y, D
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem elrnmpt2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpt2 5631 . . 3  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
32eleq2i 2145 . 2  |-  ( D  e.  ran  F  <->  D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C } )
4 elrnmpt2.1 . . . . . 6  |-  C  e. 
_V
5 eleq1 2141 . . . . . 6  |-  ( D  =  C  ->  ( D  e.  _V  <->  C  e.  _V ) )
64, 5mpbiri 166 . . . . 5  |-  ( D  =  C  ->  D  e.  _V )
76rexlimivw 2473 . . . 4  |-  ( E. y  e.  B  D  =  C  ->  D  e. 
_V )
87rexlimivw 2473 . . 3  |-  ( E. x  e.  A  E. y  e.  B  D  =  C  ->  D  e. 
_V )
9 eqeq1 2087 . . . 4  |-  ( z  =  D  ->  (
z  =  C  <->  D  =  C ) )
1092rexbidv 2391 . . 3  |-  ( z  =  D  ->  ( E. x  e.  A  E. y  e.  B  z  =  C  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
118, 10elab3 2745 . 2  |-  ( D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  <->  E. x  e.  A  E. y  e.  B  D  =  C )
123, 11bitri 182 1  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   E.wrex 2349   _Vcvv 2601   ran crn 4364    |-> cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371  df-dm 4373  df-rn 4374  df-oprab 5536  df-mpt2 5537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator