| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elz2 | Unicode version | ||
| Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| elz2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 8366 |
. 2
| |
| 2 | nn0p1nn 8327 |
. . . . . 6
| |
| 3 | 2 | adantl 271 |
. . . . 5
|
| 4 | 1nn 8050 |
. . . . . 6
| |
| 5 | 4 | a1i 9 |
. . . . 5
|
| 6 | recn 7106 |
. . . . . . . 8
| |
| 7 | 6 | adantr 270 |
. . . . . . 7
|
| 8 | ax-1cn 7069 |
. . . . . . 7
| |
| 9 | pncan 7314 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | sylancl 404 |
. . . . . 6
|
| 11 | 10 | eqcomd 2086 |
. . . . 5
|
| 12 | rspceov 5567 |
. . . . 5
| |
| 13 | 3, 5, 11, 12 | syl3anc 1169 |
. . . 4
|
| 14 | 4 | a1i 9 |
. . . . 5
|
| 15 | 6 | adantr 270 |
. . . . . . 7
|
| 16 | negsub 7356 |
. . . . . . 7
| |
| 17 | 8, 15, 16 | sylancr 405 |
. . . . . 6
|
| 18 | simpr 108 |
. . . . . . 7
| |
| 19 | nnnn0addcl 8318 |
. . . . . . 7
| |
| 20 | 4, 18, 19 | sylancr 405 |
. . . . . 6
|
| 21 | 17, 20 | eqeltrrd 2156 |
. . . . 5
|
| 22 | nncan 7337 |
. . . . . . 7
| |
| 23 | 8, 15, 22 | sylancr 405 |
. . . . . 6
|
| 24 | 23 | eqcomd 2086 |
. . . . 5
|
| 25 | rspceov 5567 |
. . . . 5
| |
| 26 | 14, 21, 24, 25 | syl3anc 1169 |
. . . 4
|
| 27 | 13, 26 | jaodan 743 |
. . 3
|
| 28 | nnre 8046 |
. . . . . . 7
| |
| 29 | nnre 8046 |
. . . . . . 7
| |
| 30 | resubcl 7372 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2an 283 |
. . . . . 6
|
| 32 | nnz 8370 |
. . . . . . . 8
| |
| 33 | nnz 8370 |
. . . . . . . 8
| |
| 34 | zletric 8395 |
. . . . . . . 8
| |
| 35 | 32, 33, 34 | syl2anr 284 |
. . . . . . 7
|
| 36 | nnnn0 8295 |
. . . . . . . . 9
| |
| 37 | nnnn0 8295 |
. . . . . . . . 9
| |
| 38 | nn0sub 8417 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38 | syl2anr 284 |
. . . . . . . 8
|
| 40 | nn0sub 8417 |
. . . . . . . . . 10
| |
| 41 | 37, 36, 40 | syl2an 283 |
. . . . . . . . 9
|
| 42 | nncn 8047 |
. . . . . . . . . . 11
| |
| 43 | nncn 8047 |
. . . . . . . . . . 11
| |
| 44 | negsubdi2 7367 |
. . . . . . . . . . 11
| |
| 45 | 42, 43, 44 | syl2an 283 |
. . . . . . . . . 10
|
| 46 | 45 | eleq1d 2147 |
. . . . . . . . 9
|
| 47 | 41, 46 | bitr4d 189 |
. . . . . . . 8
|
| 48 | 39, 47 | orbi12d 739 |
. . . . . . 7
|
| 49 | 35, 48 | mpbid 145 |
. . . . . 6
|
| 50 | 31, 49 | jca 300 |
. . . . 5
|
| 51 | eleq1 2141 |
. . . . . 6
| |
| 52 | eleq1 2141 |
. . . . . . 7
| |
| 53 | negeq 7301 |
. . . . . . . 8
| |
| 54 | 53 | eleq1d 2147 |
. . . . . . 7
|
| 55 | 52, 54 | orbi12d 739 |
. . . . . 6
|
| 56 | 51, 55 | anbi12d 456 |
. . . . 5
|
| 57 | 50, 56 | syl5ibrcom 155 |
. . . 4
|
| 58 | 57 | rexlimivv 2482 |
. . 3
|
| 59 | 27, 58 | impbii 124 |
. 2
|
| 60 | 1, 59 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 |
| This theorem is referenced by: dfz2 8420 |
| Copyright terms: Public domain | W3C validator |