ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabex Unicode version

Theorem euabex 3980
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex  |-  ( E! x ph  ->  { x  |  ph }  e.  _V )

Proof of Theorem euabex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3461 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 vex 2604 . . . . 5  |-  y  e. 
_V
32snex 3957 . . . 4  |-  { y }  e.  _V
4 eleq1 2141 . . . 4  |-  ( { x  |  ph }  =  { y }  ->  ( { x  |  ph }  e.  _V  <->  { y }  e.  _V )
)
53, 4mpbiri 166 . . 3  |-  ( { x  |  ph }  =  { y }  ->  { x  |  ph }  e.  _V )
65exlimiv 1529 . 2  |-  ( E. y { x  | 
ph }  =  {
y }  ->  { x  |  ph }  e.  _V )
71, 6sylbi 119 1  |-  ( E! x ph  ->  { x  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284   E.wex 1421    e. wcel 1433   E!weu 1941   {cab 2067   _Vcvv 2601   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator