ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomco Unicode version

Theorem xpcomco 6323
Description: Composition with the bijection of xpcomf1o 6322 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
xpcomf1o.1  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
xpcomco.1  |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )
Assertion
Ref Expression
xpcomco  |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, y, z, A    x, B, y, z    y, F, z
Allowed substitution hints:    C( x, y, z)    F( x)    G( x, y, z)

Proof of Theorem xpcomco
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomf1o.1 . . . . . . . . . 10  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
21xpcomf1o 6322 . . . . . . . . 9  |-  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
)
3 f1ofun 5148 . . . . . . . . 9  |-  ( F : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)  ->  Fun  F )
4 funbrfv2b 5239 . . . . . . . . 9  |-  ( Fun 
F  ->  ( u F w  <->  ( u  e. 
dom  F  /\  ( F `  u )  =  w ) ) )
52, 3, 4mp2b 8 . . . . . . . 8  |-  ( u F w  <->  ( u  e.  dom  F  /\  ( F `  u )  =  w ) )
6 ancom 262 . . . . . . . 8  |-  ( ( u  e.  dom  F  /\  ( F `  u
)  =  w )  <-> 
( ( F `  u )  =  w  /\  u  e.  dom  F ) )
7 eqcom 2083 . . . . . . . . 9  |-  ( ( F `  u )  =  w  <->  w  =  ( F `  u ) )
8 f1odm 5150 . . . . . . . . . . 11  |-  ( F : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)  ->  dom  F  =  ( A  X.  B
) )
92, 8ax-mp 7 . . . . . . . . . 10  |-  dom  F  =  ( A  X.  B )
109eleq2i 2145 . . . . . . . . 9  |-  ( u  e.  dom  F  <->  u  e.  ( A  X.  B
) )
117, 10anbi12i 447 . . . . . . . 8  |-  ( ( ( F `  u
)  =  w  /\  u  e.  dom  F )  <-> 
( w  =  ( F `  u )  /\  u  e.  ( A  X.  B ) ) )
125, 6, 113bitri 204 . . . . . . 7  |-  ( u F w  <->  ( w  =  ( F `  u )  /\  u  e.  ( A  X.  B
) ) )
1312anbi1i 445 . . . . . 6  |-  ( ( u F w  /\  w G v )  <->  ( (
w  =  ( F `
 u )  /\  u  e.  ( A  X.  B ) )  /\  w G v ) )
14 anass 393 . . . . . 6  |-  ( ( ( w  =  ( F `  u )  /\  u  e.  ( A  X.  B ) )  /\  w G v )  <->  ( w  =  ( F `  u )  /\  (
u  e.  ( A  X.  B )  /\  w G v ) ) )
1513, 14bitri 182 . . . . 5  |-  ( ( u F w  /\  w G v )  <->  ( w  =  ( F `  u )  /\  (
u  e.  ( A  X.  B )  /\  w G v ) ) )
1615exbii 1536 . . . 4  |-  ( E. w ( u F w  /\  w G v )  <->  E. w
( w  =  ( F `  u )  /\  ( u  e.  ( A  X.  B
)  /\  w G
v ) ) )
17 vex 2604 . . . . . . 7  |-  u  e. 
_V
181mptfvex 5277 . . . . . . 7  |-  ( ( A. x U. `' { x }  e.  _V  /\  u  e.  _V )  ->  ( F `  u )  e.  _V )
1917, 18mpan2 415 . . . . . 6  |-  ( A. x U. `' { x }  e.  _V  ->  ( F `  u )  e.  _V )
20 vex 2604 . . . . . . . . 9  |-  x  e. 
_V
2120snex 3957 . . . . . . . 8  |-  { x }  e.  _V
2221cnvex 4876 . . . . . . 7  |-  `' {
x }  e.  _V
2322uniex 4192 . . . . . 6  |-  U. `' { x }  e.  _V
2419, 23mpg 1380 . . . . 5  |-  ( F `
 u )  e. 
_V
25 breq1 3788 . . . . . 6  |-  ( w  =  ( F `  u )  ->  (
w G v  <->  ( F `  u ) G v ) )
2625anbi2d 451 . . . . 5  |-  ( w  =  ( F `  u )  ->  (
( u  e.  ( A  X.  B )  /\  w G v )  <->  ( u  e.  ( A  X.  B
)  /\  ( F `  u ) G v ) ) )
2724, 26ceqsexv 2638 . . . 4  |-  ( E. w ( w  =  ( F `  u
)  /\  ( u  e.  ( A  X.  B
)  /\  w G
v ) )  <->  ( u  e.  ( A  X.  B
)  /\  ( F `  u ) G v ) )
28 elxp 4380 . . . . . 6  |-  ( u  e.  ( A  X.  B )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) ) )
2928anbi1i 445 . . . . 5  |-  ( ( u  e.  ( A  X.  B )  /\  ( F `  u ) G v )  <->  ( E. z E. y ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v ) )
30 nfcv 2219 . . . . . . 7  |-  F/_ z
( F `  u
)
31 xpcomco.1 . . . . . . . 8  |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )
32 nfmpt22 5592 . . . . . . . 8  |-  F/_ z
( y  e.  B ,  z  e.  A  |->  C )
3331, 32nfcxfr 2216 . . . . . . 7  |-  F/_ z G
34 nfcv 2219 . . . . . . 7  |-  F/_ z
v
3530, 33, 34nfbr 3829 . . . . . 6  |-  F/ z ( F `  u
) G v
363519.41 1616 . . . . 5  |-  ( E. z ( E. y
( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( E. z E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) )  /\  ( F `  u ) G v ) )
37 nfcv 2219 . . . . . . . . 9  |-  F/_ y
( F `  u
)
38 nfmpt21 5591 . . . . . . . . . 10  |-  F/_ y
( y  e.  B ,  z  e.  A  |->  C )
3931, 38nfcxfr 2216 . . . . . . . . 9  |-  F/_ y G
40 nfcv 2219 . . . . . . . . 9  |-  F/_ y
v
4137, 39, 40nfbr 3829 . . . . . . . 8  |-  F/ y ( F `  u
) G v
424119.41 1616 . . . . . . 7  |-  ( E. y ( ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  ( E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) )  /\  ( F `  u ) G v ) )
43 anass 393 . . . . . . . . 9  |-  ( ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  ( F `  u ) G v ) ) )
44 fveq2 5198 . . . . . . . . . . . . . 14  |-  ( u  =  <. z ,  y
>.  ->  ( F `  u )  =  ( F `  <. z ,  y >. )
)
45 opelxpi 4394 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  y  e.  B )  -> 
<. z ,  y >.  e.  ( A  X.  B
) )
46 sneq 3409 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  <. z ,  y
>.  ->  { x }  =  { <. z ,  y
>. } )
4746cnveqd 4529 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  <. z ,  y
>.  ->  `' { x }  =  `' { <. z ,  y >. } )
4847unieqd 3612 . . . . . . . . . . . . . . . . 17  |-  ( x  =  <. z ,  y
>.  ->  U. `' { x }  =  U. `' { <. z ,  y >. } )
49 vex 2604 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
50 vex 2604 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
51 opswapg 4827 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  _V  /\  y  e.  _V )  ->  U. `' { <. z ,  y >. }  =  <. y ,  z >.
)
5249, 50, 51mp2an 416 . . . . . . . . . . . . . . . . 17  |-  U. `' { <. z ,  y
>. }  =  <. y ,  z >.
5348, 52syl6eq 2129 . . . . . . . . . . . . . . . 16  |-  ( x  =  <. z ,  y
>.  ->  U. `' { x }  =  <. y ,  z >. )
5450, 49opex 3984 . . . . . . . . . . . . . . . 16  |-  <. y ,  z >.  e.  _V
5553, 1, 54fvmpt 5270 . . . . . . . . . . . . . . 15  |-  ( <.
z ,  y >.  e.  ( A  X.  B
)  ->  ( F `  <. z ,  y
>. )  =  <. y ,  z >. )
5645, 55syl 14 . . . . . . . . . . . . . 14  |-  ( ( z  e.  A  /\  y  e.  B )  ->  ( F `  <. z ,  y >. )  =  <. y ,  z
>. )
5744, 56sylan9eq 2133 . . . . . . . . . . . . 13  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( F `  u )  =  <. y ,  z >. )
5857breq1d 3795 . . . . . . . . . . . 12  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( ( F `  u ) G v  <->  <. y ,  z >. G v ) )
59 df-br 3786 . . . . . . . . . . . . . . . 16  |-  ( <.
y ,  z >. G v  <->  <. <. y ,  z >. ,  v
>.  e.  G )
60 df-mpt2 5537 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  B ,  z  e.  A  |->  C )  =  { <. <. y ,  z >. ,  v
>.  |  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) }
6131, 60eqtri 2101 . . . . . . . . . . . . . . . . 17  |-  G  =  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) }
6261eleq2i 2145 . . . . . . . . . . . . . . . 16  |-  ( <. <. y ,  z >. ,  v >.  e.  G  <->  <. <. y ,  z >. ,  v >.  e.  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) } )
63 oprabid 5557 . . . . . . . . . . . . . . . 16  |-  ( <. <. y ,  z >. ,  v >.  e.  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) }  <->  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) )
6459, 62, 633bitri 204 . . . . . . . . . . . . . . 15  |-  ( <.
y ,  z >. G v  <->  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) )
6564baib 861 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  z  e.  A )  ->  ( <. y ,  z
>. G v  <->  v  =  C ) )
6665ancoms 264 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  /\  y  e.  B )  ->  ( <. y ,  z
>. G v  <->  v  =  C ) )
6766adantl 271 . . . . . . . . . . . 12  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( <. y ,  z >. G v  <-> 
v  =  C ) )
6858, 67bitrd 186 . . . . . . . . . . 11  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( ( F `  u ) G v  <->  v  =  C ) )
6968pm5.32da 439 . . . . . . . . . 10  |-  ( u  =  <. z ,  y
>.  ->  ( ( ( z  e.  A  /\  y  e.  B )  /\  ( F `  u
) G v )  <-> 
( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7069pm5.32i 441 . . . . . . . . 9  |-  ( ( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  ( F `  u ) G v ) )  <->  ( u  =  <. z ,  y
>.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7143, 70bitri 182 . . . . . . . 8  |-  ( ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7271exbii 1536 . . . . . . 7  |-  ( E. y ( ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7342, 72bitr3i 184 . . . . . 6  |-  ( ( E. y ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7473exbii 1536 . . . . 5  |-  ( E. z ( E. y
( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  E. z E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7529, 36, 743bitr2i 206 . . . 4  |-  ( ( u  e.  ( A  X.  B )  /\  ( F `  u ) G v )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7616, 27, 753bitri 204 . . 3  |-  ( E. w ( u F w  /\  w G v )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7776opabbii 3845 . 2  |-  { <. u ,  v >.  |  E. w ( u F w  /\  w G v ) }  =  { <. u ,  v
>.  |  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
78 df-co 4372 . 2  |-  ( G  o.  F )  =  { <. u ,  v
>.  |  E. w
( u F w  /\  w G v ) }
79 df-mpt2 5537 . . 3  |-  ( z  e.  A ,  y  e.  B  |->  C )  =  { <. <. z ,  y >. ,  v
>.  |  ( (
z  e.  A  /\  y  e.  B )  /\  v  =  C
) }
80 dfoprab2 5572 . . 3  |-  { <. <.
z ,  y >. ,  v >.  |  ( ( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) }  =  { <. u ,  v
>.  |  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
8179, 80eqtri 2101 . 2  |-  ( z  e.  A ,  y  e.  B  |->  C )  =  { <. u ,  v >.  |  E. z E. y ( u  =  <. z ,  y
>.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
8277, 78, 813eqtr4i 2111 1  |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601   {csn 3398   <.cop 3401   U.cuni 3601   class class class wbr 3785   {copab 3838    |-> cmpt 3839    X. cxp 4361   `'ccnv 4362   dom cdm 4363    o. ccom 4367   Fun wfun 4916   -1-1-onto->wf1o 4921   ` cfv 4922   {coprab 5533    |-> cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator