ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4 Unicode version

Theorem phplem4 6341
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )

Proof of Theorem phplem4
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6251 . 2  |-  ( suc 
A  ~~  suc  B  <->  E. f 
f : suc  A -1-1-onto-> suc  B )
2 f1of1 5145 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -1-1-> suc 
B )
32adantl 271 . . . . . . . . 9  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
4 phplem2.2 . . . . . . . . . 10  |-  B  e. 
_V
54sucex 4243 . . . . . . . . 9  |-  suc  B  e.  _V
6 sssucid 4170 . . . . . . . . . 10  |-  A  C_  suc  A
7 phplem2.1 . . . . . . . . . 10  |-  A  e. 
_V
8 f1imaen2g 6296 . . . . . . . . . 10  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  _V )  /\  ( A  C_  suc  A  /\  A  e.  _V ) )  ->  (
f " A ) 
~~  A )
96, 7, 8mpanr12 429 . . . . . . . . 9  |-  ( ( f : suc  A -1-1-> suc 
B  /\  suc  B  e. 
_V )  ->  (
f " A ) 
~~  A )
103, 5, 9sylancl 404 . . . . . . . 8  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  ~~  A
)
1110ensymd 6286 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( f " A
) )
12 nnord 4352 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
13 orddif 4290 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1412, 13syl 14 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1514imaeq2d 4688 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
16 f1ofn 5147 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f  Fn  suc  A
)
177sucid 4172 . . . . . . . . . . 11  |-  A  e. 
suc  A
18 fnsnfv 5253 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
1916, 17, 18sylancl 404 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  { ( f `  A ) }  =  ( f " { A } ) )
2019difeq2d 3090 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f " suc  A )  \  {
( f `  A
) } )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
21 imadmrn 4698 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
2221eqcomi 2085 . . . . . . . . . . 11  |-  ran  f  =  ( f " dom  f )
23 f1ofo 5153 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -onto-> suc  B )
24 forn 5129 . . . . . . . . . . . 12  |-  ( f : suc  A -onto-> suc  B  ->  ran  f  =  suc  B )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ran  f  =  suc  B )
26 f1odm 5150 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  dom  f  =  suc  A )
2726imaeq2d 4688 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " dom  f )  =  ( f " suc  A
) )
2822, 25, 273eqtr3a 2137 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  suc  B  =  ( f " suc  A
) )
2928difeq1d 3089 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( suc  B  \  { ( f `  A ) } )  =  ( ( f
" suc  A )  \  { ( f `  A ) } ) )
30 dff1o3 5152 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  <->  ( f : suc  A -onto-> suc  B  /\  Fun  `' f ) )
3130simprbi 269 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  Fun  `' f )
32 imadif 4999 . . . . . . . . . 10  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3331, 32syl 14 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3420, 29, 333eqtr4rd 2124 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( suc  B  \  { ( f `  A ) } ) )
3515, 34sylan9eq 2133 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  =  ( suc  B  \  {
( f `  A
) } ) )
3611, 35breqtrd 3809 . . . . . 6  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( suc  B  \  {
( f `  A
) } ) )
37 fnfvelrn 5320 . . . . . . . . . 10  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  ( f `  A )  e.  ran  f )
3816, 17, 37sylancl 404 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  ran  f
)
3924eleq2d 2148 . . . . . . . . . 10  |-  ( f : suc  A -onto-> suc  B  ->  ( ( f `
 A )  e. 
ran  f  <->  ( f `  A )  e.  suc  B ) )
4023, 39syl 14 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f `  A )  e.  ran  f 
<->  ( f `  A
)  e.  suc  B
) )
4138, 40mpbid 145 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  suc  B
)
42 vex 2604 . . . . . . . . . 10  |-  f  e. 
_V
4342, 7fvex 5215 . . . . . . . . 9  |-  ( f `
 A )  e. 
_V
444, 43phplem3 6340 . . . . . . . 8  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4541, 44sylan2 280 . . . . . . 7  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4645ensymd 6286 . . . . . 6  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
47 entr 6287 . . . . . 6  |-  ( ( A  ~~  ( suc 
B  \  { (
f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } )  ~~  B
)  ->  A  ~~  B )
4836, 46, 47syl2an 283 . . . . 5  |-  ( ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B )  /\  ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B ) )  ->  A  ~~  B
)
4948anandirs 557 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  ~~  B )
5049ex 113 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( f : suc  A -1-1-onto-> suc 
B  ->  A  ~~  B ) )
5150exlimdv 1740 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. f  f : suc  A -1-1-onto-> suc  B  ->  A  ~~  B ) )
521, 51syl5bi 150 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601    \ cdif 2970    C_ wss 2973   {csn 3398   class class class wbr 3785   Ord word 4117   suc csuc 4120   omcom 4331   `'ccnv 4362   dom cdm 4363   ran crn 4364   "cima 4366   Fun wfun 4916    Fn wfn 4917   -1-1->wf1 4919   -onto->wfo 4920   -1-1-onto->wf1o 4921   ` cfv 4922    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-er 6129  df-en 6245
This theorem is referenced by:  nneneq  6343  php5  6344
  Copyright terms: Public domain W3C validator