ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1veqaeq Unicode version

Theorem f1veqaeq 5429
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)

Proof of Theorem f1veqaeq
Dummy variables  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5428 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) ) )
2 fveq2 5198 . . . . . . . 8  |-  ( c  =  C  ->  ( F `  c )  =  ( F `  C ) )
32eqeq1d 2089 . . . . . . 7  |-  ( c  =  C  ->  (
( F `  c
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  d ) ) )
4 eqeq1 2087 . . . . . . 7  |-  ( c  =  C  ->  (
c  =  d  <->  C  =  d ) )
53, 4imbi12d 232 . . . . . 6  |-  ( c  =  C  ->  (
( ( F `  c )  =  ( F `  d )  ->  c  =  d )  <->  ( ( F `
 C )  =  ( F `  d
)  ->  C  =  d ) ) )
6 fveq2 5198 . . . . . . . 8  |-  ( d  =  D  ->  ( F `  d )  =  ( F `  D ) )
76eqeq2d 2092 . . . . . . 7  |-  ( d  =  D  ->  (
( F `  C
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  D ) ) )
8 eqeq2 2090 . . . . . . 7  |-  ( d  =  D  ->  ( C  =  d  <->  C  =  D ) )
97, 8imbi12d 232 . . . . . 6  |-  ( d  =  D  ->  (
( ( F `  C )  =  ( F `  d )  ->  C  =  d )  <->  ( ( F `
 C )  =  ( F `  D
)  ->  C  =  D ) ) )
105, 9rspc2v 2713 . . . . 5  |-  ( ( C  e.  A  /\  D  e.  A )  ->  ( A. c  e.  A  A. d  e.  A  ( ( F `
 c )  =  ( F `  d
)  ->  c  =  d )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1110com12 30 . . . 4  |-  ( A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1211adantl 271 . . 3  |-  ( ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  ( ( F `  C )  =  ( F `  D )  ->  C  =  D ) ) )
131, 12sylbi 119 . 2  |-  ( F : A -1-1-> B  -> 
( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1413imp 122 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   -->wf 4918   -1-1->wf1 4919   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fv 4930
This theorem is referenced by:  f1fveq  5432  f1ocnvfvrneq  5442  f1o2ndf1  5869  fidceq  6354
  Copyright terms: Public domain W3C validator