| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidceq | Unicode version | ||
| Description: Equality of members of a
finite set is decidable. This may be
counterintuitive: cannot any two sets be elements of a finite set?
Well, to show, for example, that |
| Ref | Expression |
|---|---|
| fidceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6264 |
. . . 4
| |
| 2 | 1 | biimpi 118 |
. . 3
|
| 3 | 2 | 3ad2ant1 959 |
. 2
|
| 4 | bren 6251 |
. . . . 5
| |
| 5 | 4 | biimpi 118 |
. . . 4
|
| 6 | 5 | ad2antll 474 |
. . 3
|
| 7 | f1of 5146 |
. . . . . . . . . 10
| |
| 8 | 7 | adantl 271 |
. . . . . . . . 9
|
| 9 | simpll2 978 |
. . . . . . . . 9
| |
| 10 | 8, 9 | ffvelrnd 5324 |
. . . . . . . 8
|
| 11 | simplrl 501 |
. . . . . . . 8
| |
| 12 | elnn 4346 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | syl2anc 403 |
. . . . . . 7
|
| 14 | simpll3 979 |
. . . . . . . . 9
| |
| 15 | 8, 14 | ffvelrnd 5324 |
. . . . . . . 8
|
| 16 | elnn 4346 |
. . . . . . . 8
| |
| 17 | 15, 11, 16 | syl2anc 403 |
. . . . . . 7
|
| 18 | nndceq 6100 |
. . . . . . 7
| |
| 19 | 13, 17, 18 | syl2anc 403 |
. . . . . 6
|
| 20 | exmiddc 777 |
. . . . . 6
| |
| 21 | 19, 20 | syl 14 |
. . . . 5
|
| 22 | f1of1 5145 |
. . . . . . . 8
| |
| 23 | 22 | adantl 271 |
. . . . . . 7
|
| 24 | f1veqaeq 5429 |
. . . . . . 7
| |
| 25 | 23, 9, 14, 24 | syl12anc 1167 |
. . . . . 6
|
| 26 | fveq2 5198 |
. . . . . . . 8
| |
| 27 | 26 | con3i 594 |
. . . . . . 7
|
| 28 | 27 | a1i 9 |
. . . . . 6
|
| 29 | 25, 28 | orim12d 732 |
. . . . 5
|
| 30 | 21, 29 | mpd 13 |
. . . 4
|
| 31 | df-dc 776 |
. . . 4
| |
| 32 | 30, 31 | sylibr 132 |
. . 3
|
| 33 | 6, 32 | exlimddv 1819 |
. 2
|
| 34 | 3, 33 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-en 6245 df-fin 6247 |
| This theorem is referenced by: fidifsnen 6355 fidifsnid 6356 |
| Copyright terms: Public domain | W3C validator |