ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprc Unicode version

Theorem fiprc 6315
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc  |-  Fin  e/  _V

Proof of Theorem fiprc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 4199 . 2  |-  { x  |  E. y  x  =  { y } }  e/  _V
2 vex 2604 . . . . . . . . 9  |-  y  e. 
_V
3 snfig 6314 . . . . . . . . 9  |-  ( y  e.  _V  ->  { y }  e.  Fin )
42, 3ax-mp 7 . . . . . . . 8  |-  { y }  e.  Fin
5 eleq1 2141 . . . . . . . 8  |-  ( x  =  { y }  ->  ( x  e. 
Fin 
<->  { y }  e.  Fin ) )
64, 5mpbiri 166 . . . . . . 7  |-  ( x  =  { y }  ->  x  e.  Fin )
76exlimiv 1529 . . . . . 6  |-  ( E. y  x  =  {
y }  ->  x  e.  Fin )
87abssi 3069 . . . . 5  |-  { x  |  E. y  x  =  { y } }  C_ 
Fin
9 ssexg 3917 . . . . 5  |-  ( ( { x  |  E. y  x  =  {
y } }  C_  Fin  /\  Fin  e.  _V )  ->  { x  |  E. y  x  =  { y } }  e.  _V )
108, 9mpan 414 . . . 4  |-  ( Fin 
e.  _V  ->  { x  |  E. y  x  =  { y } }  e.  _V )
1110con3i 594 . . 3  |-  ( -. 
{ x  |  E. y  x  =  {
y } }  e.  _V  ->  -.  Fin  e.  _V )
12 df-nel 2340 . . 3  |-  ( { x  |  E. y  x  =  { y } }  e/  _V  <->  -.  { x  |  E. y  x  =  { y } }  e.  _V )
13 df-nel 2340 . . 3  |-  ( Fin 
e/  _V  <->  -.  Fin  e.  _V )
1411, 12, 133imtr4i 199 . 2  |-  ( { x  |  E. y  x  =  { y } }  e/  _V  ->  Fin 
e/  _V )
151, 14ax-mp 7 1  |-  Fin  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067    e/ wnel 2339   _Vcvv 2601    C_ wss 2973   {csn 3398   Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-nel 2340  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-1o 6024  df-en 6245  df-fin 6247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator