| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnex | Unicode version | ||
| Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 3909 |
. . . 4
| |
| 2 | vsnid 3426 |
. . . . . . . . 9
| |
| 3 | a9ev 1627 |
. . . . . . . . . 10
| |
| 4 | sneq 3409 |
. . . . . . . . . . 11
| |
| 5 | 4 | equcoms 1634 |
. . . . . . . . . 10
|
| 6 | 3, 5 | eximii 1533 |
. . . . . . . . 9
|
| 7 | vex 2604 |
. . . . . . . . . . 11
| |
| 8 | 7 | snex 3957 |
. . . . . . . . . 10
|
| 9 | eleq2 2142 |
. . . . . . . . . . 11
| |
| 10 | eqeq1 2087 |
. . . . . . . . . . . 12
| |
| 11 | 10 | exbidv 1746 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | anbi12d 456 |
. . . . . . . . . 10
|
| 13 | 8, 12 | spcev 2692 |
. . . . . . . . 9
|
| 14 | 2, 6, 13 | mp2an 416 |
. . . . . . . 8
|
| 15 | eluniab 3613 |
. . . . . . . 8
| |
| 16 | 14, 15 | mpbir 144 |
. . . . . . 7
|
| 17 | 16, 7 | 2th 172 |
. . . . . 6
|
| 18 | 17 | eqriv 2078 |
. . . . 5
|
| 19 | 18 | eleq1i 2144 |
. . . 4
|
| 20 | 1, 19 | mtbir 628 |
. . 3
|
| 21 | uniexg 4193 |
. . 3
| |
| 22 | 20, 21 | mto 620 |
. 2
|
| 23 | 22 | nelir 2342 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-nel 2340 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-uni 3602 |
| This theorem is referenced by: fiprc 6315 |
| Copyright terms: Public domain | W3C validator |