| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptpr | Unicode version | ||
| Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| fmptpr.1 |
|
| fmptpr.2 |
|
| fmptpr.3 |
|
| fmptpr.4 |
|
| fmptpr.5 |
|
| fmptpr.6 |
|
| Ref | Expression |
|---|---|
| fmptpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3405 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpt0 5046 |
. . . . . 6
| |
| 4 | 3 | uneq1i 3122 |
. . . . 5
|
| 5 | uncom 3116 |
. . . . 5
| |
| 6 | un0 3278 |
. . . . 5
| |
| 7 | 4, 5, 6 | 3eqtri 2105 |
. . . 4
|
| 8 | fmptpr.1 |
. . . . . 6
| |
| 9 | elex 2610 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | fmptpr.3 |
. . . . . 6
| |
| 12 | elex 2610 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | uncom 3116 |
. . . . . . 7
| |
| 15 | un0 3278 |
. . . . . . 7
| |
| 16 | 14, 15 | eqtr3i 2103 |
. . . . . 6
|
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | fmptpr.5 |
. . . . 5
| |
| 19 | 10, 13, 17, 18 | fmptapd 5375 |
. . . 4
|
| 20 | 7, 19 | syl5eqr 2127 |
. . 3
|
| 21 | 20 | uneq1d 3125 |
. 2
|
| 22 | fmptpr.2 |
. . . 4
| |
| 23 | elex 2610 |
. . . 4
| |
| 24 | 22, 23 | syl 14 |
. . 3
|
| 25 | fmptpr.4 |
. . . 4
| |
| 26 | elex 2610 |
. . . 4
| |
| 27 | 25, 26 | syl 14 |
. . 3
|
| 28 | df-pr 3405 |
. . . . 5
| |
| 29 | 28 | eqcomi 2085 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | fmptpr.6 |
. . 3
| |
| 32 | 24, 27, 30, 31 | fmptapd 5375 |
. 2
|
| 33 | 2, 21, 32 | 3eqtrd 2117 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |