ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1 Unicode version

Theorem fneq1 5007
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fneq1  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )

Proof of Theorem fneq1
StepHypRef Expression
1 funeq 4941 . . 3  |-  ( F  =  G  ->  ( Fun  F  <->  Fun  G ) )
2 dmeq 4553 . . . 4  |-  ( F  =  G  ->  dom  F  =  dom  G )
32eqeq1d 2089 . . 3  |-  ( F  =  G  ->  ( dom  F  =  A  <->  dom  G  =  A ) )
41, 3anbi12d 456 . 2  |-  ( F  =  G  ->  (
( Fun  F  /\  dom  F  =  A )  <-> 
( Fun  G  /\  dom  G  =  A ) ) )
5 df-fn 4925 . 2  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
6 df-fn 4925 . 2  |-  ( G  Fn  A  <->  ( Fun  G  /\  dom  G  =  A ) )
74, 5, 63bitr4g 221 1  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   dom cdm 4363   Fun wfun 4916    Fn wfn 4917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-fn 4925
This theorem is referenced by:  fneq1d  5009  fneq1i  5013  fn0  5038  feq1  5050  foeq1  5122  f1ocnv  5159  mpteqb  5282  eufnfv  5410  tfr0  5960  tfrlemiex  5968
  Copyright terms: Public domain W3C validator