ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 Unicode version

Theorem fn0 5038
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0  |-  ( F  Fn  (/)  <->  F  =  (/) )

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 5017 . . 3  |-  ( F  Fn  (/)  ->  Rel  F )
2 fndm 5018 . . 3  |-  ( F  Fn  (/)  ->  dom  F  =  (/) )
3 reldm0 4571 . . . 4  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
43biimpar 291 . . 3  |-  ( ( Rel  F  /\  dom  F  =  (/) )  ->  F  =  (/) )
51, 2, 4syl2anc 403 . 2  |-  ( F  Fn  (/)  ->  F  =  (/) )
6 fun0 4977 . . . 4  |-  Fun  (/)
7 dm0 4567 . . . 4  |-  dom  (/)  =  (/)
8 df-fn 4925 . . . 4  |-  ( (/)  Fn  (/) 
<->  ( Fun  (/)  /\  dom  (/)  =  (/) ) )
96, 7, 8mpbir2an 883 . . 3  |-  (/)  Fn  (/)
10 fneq1 5007 . . 3  |-  ( F  =  (/)  ->  ( F  Fn  (/)  <->  (/)  Fn  (/) ) )
119, 10mpbiri 166 . 2  |-  ( F  =  (/)  ->  F  Fn  (/) )
125, 11impbii 124 1  |-  ( F  Fn  (/)  <->  F  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284   (/)c0 3251   dom cdm 4363   Rel wrel 4368   Fun wfun 4916    Fn wfn 4917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-fn 4925
This theorem is referenced by:  mpt0  5046  f0  5100  f00  5101  f1o00  5181  fo00  5182  tpos0  5912  0fz1  9064
  Copyright terms: Public domain W3C validator