| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr0 | Unicode version | ||
| Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.) |
| Ref | Expression |
|---|---|
| tfr.1 |
|
| Ref | Expression |
|---|---|
| tfr0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 3905 |
. . . . 5
| |
| 2 | opexg 3983 |
. . . . 5
| |
| 3 | 1, 2 | mpan 414 |
. . . 4
|
| 4 | snidg 3423 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | fnsng 4967 |
. . . . 5
| |
| 7 | 1, 6 | mpan 414 |
. . . 4
|
| 8 | fvsng 5380 |
. . . . . . 7
| |
| 9 | 1, 8 | mpan 414 |
. . . . . 6
|
| 10 | res0 4634 |
. . . . . . 7
| |
| 11 | 10 | fveq2i 5201 |
. . . . . 6
|
| 12 | 9, 11 | syl6eqr 2131 |
. . . . 5
|
| 13 | fveq2 5198 |
. . . . . . 7
| |
| 14 | reseq2 4625 |
. . . . . . . 8
| |
| 15 | 14 | fveq2d 5202 |
. . . . . . 7
|
| 16 | 13, 15 | eqeq12d 2095 |
. . . . . 6
|
| 17 | 1, 16 | ralsn 3436 |
. . . . 5
|
| 18 | 12, 17 | sylibr 132 |
. . . 4
|
| 19 | suc0 4166 |
. . . . . 6
| |
| 20 | 0elon 4147 |
. . . . . . 7
| |
| 21 | 20 | onsuci 4260 |
. . . . . 6
|
| 22 | 19, 21 | eqeltrri 2152 |
. . . . 5
|
| 23 | fneq2 5008 |
. . . . . . 7
| |
| 24 | raleq 2549 |
. . . . . . 7
| |
| 25 | 23, 24 | anbi12d 456 |
. . . . . 6
|
| 26 | 25 | rspcev 2701 |
. . . . 5
|
| 27 | 22, 26 | mpan 414 |
. . . 4
|
| 28 | 7, 18, 27 | syl2anc 403 |
. . 3
|
| 29 | snexg 3956 |
. . . . 5
| |
| 30 | eleq2 2142 |
. . . . . . 7
| |
| 31 | fneq1 5007 |
. . . . . . . . 9
| |
| 32 | fveq1 5197 |
. . . . . . . . . . 11
| |
| 33 | reseq1 4624 |
. . . . . . . . . . . 12
| |
| 34 | 33 | fveq2d 5202 |
. . . . . . . . . . 11
|
| 35 | 32, 34 | eqeq12d 2095 |
. . . . . . . . . 10
|
| 36 | 35 | ralbidv 2368 |
. . . . . . . . 9
|
| 37 | 31, 36 | anbi12d 456 |
. . . . . . . 8
|
| 38 | 37 | rexbidv 2369 |
. . . . . . 7
|
| 39 | 30, 38 | anbi12d 456 |
. . . . . 6
|
| 40 | 39 | spcegv 2686 |
. . . . 5
|
| 41 | 3, 29, 40 | 3syl 17 |
. . . 4
|
| 42 | tfr.1 |
. . . . . 6
| |
| 43 | 42 | eleq2i 2145 |
. . . . 5
|
| 44 | df-recs 5943 |
. . . . . 6
| |
| 45 | 44 | eleq2i 2145 |
. . . . 5
|
| 46 | eluniab 3613 |
. . . . 5
| |
| 47 | 43, 45, 46 | 3bitri 204 |
. . . 4
|
| 48 | 41, 47 | syl6ibr 160 |
. . 3
|
| 49 | 5, 28, 48 | mp2and 423 |
. 2
|
| 50 | opeldmg 4558 |
. . . . 5
| |
| 51 | 1, 50 | mpan 414 |
. . . 4
|
| 52 | 42 | tfr2a 5959 |
. . . 4
|
| 53 | 51, 52 | syl6 33 |
. . 3
|
| 54 | res0 4634 |
. . . . 5
| |
| 55 | 54 | fveq2i 5201 |
. . . 4
|
| 56 | 55 | eqeq2i 2091 |
. . 3
|
| 57 | 53, 56 | syl6ib 159 |
. 2
|
| 58 | 49, 57 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-res 4375 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-recs 5943 |
| This theorem is referenced by: rdg0 5997 frec0g 6006 |
| Copyright terms: Public domain | W3C validator |