ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0 Unicode version

Theorem tfr0 5960
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr0  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )

Proof of Theorem tfr0
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3905 . . . . 5  |-  (/)  e.  _V
2 opexg 3983 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  <. (/) ,  ( G `  (/) ) >.  e.  _V )
31, 2mpan 414 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  _V )
4 snidg 3423 . . . 4  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  _V  -> 
<. (/) ,  ( G `
 (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. } )
53, 4syl 14 . . 3  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  { <. (/) ,  ( G `
 (/) ) >. } )
6 fnsng 4967 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  { <. (/)
,  ( G `  (/) ) >. }  Fn  { (/)
} )
71, 6mpan 414 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  { <. (/) ,  ( G `  (/) ) >. }  Fn  { (/) } )
8 fvsng 5380 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  ( { <. (/) ,  ( G `
 (/) ) >. } `  (/) )  =  ( G `
 (/) ) )
91, 8mpan 414 . . . . . 6  |-  ( ( G `  (/) )  e.  V  ->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 (/) ) )
10 res0 4634 . . . . . . 7  |-  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) )  =  (/)
1110fveq2i 5201 . . . . . 6  |-  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) )  =  ( G `  (/) )
129, 11syl6eqr 2131 . . . . 5  |-  ( ( G `  (/) )  e.  V  ->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) )
13 fveq2 5198 . . . . . . 7  |-  ( y  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. } `  (/) ) )
14 reseq2 4625 . . . . . . . 8  |-  ( y  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) ) )
1514fveq2d 5202 . . . . . . 7  |-  ( y  =  (/)  ->  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) ) ) )
1613, 15eqeq12d 2095 . . . . . 6  |-  ( y  =  (/)  ->  ( ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) ) )
171, 16ralsn 3436 . . . . 5  |-  ( A. y  e.  { (/) }  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) )
1812, 17sylibr 132 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )
19 suc0 4166 . . . . . 6  |-  suc  (/)  =  { (/)
}
20 0elon 4147 . . . . . . 7  |-  (/)  e.  On
2120onsuci 4260 . . . . . 6  |-  suc  (/)  e.  On
2219, 21eqeltrri 2152 . . . . 5  |-  { (/) }  e.  On
23 fneq2 5008 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x 
<->  { <. (/) ,  ( G `
 (/) ) >. }  Fn  {
(/) } ) )
24 raleq 2549 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
2523, 24anbi12d 456 . . . . . 6  |-  ( x  =  { (/) }  ->  ( ( { <. (/) ,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. }  Fn  {
(/) }  /\  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) ) )
2625rspcev 2701 . . . . 5  |-  ( ( { (/) }  e.  On  /\  ( { <. (/) ,  ( G `  (/) ) >. }  Fn  { (/) }  /\  A. y  e.  { (/) }  ( { <. (/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )  ->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )
2722, 26mpan 414 . . . 4  |-  ( ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  {
(/) }  /\  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )  ->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )
287, 18, 27syl2anc 403 . . 3  |-  ( ( G `  (/) )  e.  V  ->  E. x  e.  On  ( { <. (/)
,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
29 snexg 3956 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  _V  ->  { <. (/) ,  ( G `
 (/) ) >. }  e.  _V )
30 eleq2 2142 . . . . . . 7  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( <. (/) ,  ( G `  (/) ) >.  e.  f  <->  <. (/) ,  ( G `
 (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. } ) )
31 fneq1 5007 . . . . . . . . 9  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f  Fn  x  <->  { <. (/) ,  ( G `
 (/) ) >. }  Fn  x ) )
32 fveq1 5197 . . . . . . . . . . 11  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f `  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. } `  y ) )
33 reseq1 4624 . . . . . . . . . . . 12  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f  |`  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) )
3433fveq2d 5202 . . . . . . . . . . 11  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( G `  ( f  |`  y
) )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )
3532, 34eqeq12d 2095 . . . . . . . . . 10  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( f `
 y )  =  ( G `  (
f  |`  y ) )  <-> 
( { <. (/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
3635ralbidv 2368 . . . . . . . . 9  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) )  <->  A. y  e.  x  ( { <.
(/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
3731, 36anbi12d 456 . . . . . . . 8  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) )
3837rexbidv 2369 . . . . . . 7  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )  <->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) )
3930, 38anbi12d 456 . . . . . 6  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) )  <->  ( <. (/) ,  ( G `  (/) ) >.  e.  { <. (/) ,  ( G `
 (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) ) )
4039spcegv 2686 . . . . 5  |-  ( {
<. (/) ,  ( G `
 (/) ) >. }  e.  _V  ->  ( ( <. (/)
,  ( G `  (/) ) >.  e.  { <. (/)
,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) ) )
413, 29, 403syl 17 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  ( ( <.
(/) ,  ( G `  (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) ) )
42 tfr.1 . . . . . 6  |-  F  = recs ( G )
4342eleq2i 2145 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  F  <->  <. (/)
,  ( G `  (/) ) >.  e. recs ( G ) )
44 df-recs 5943 . . . . . 6  |- recs ( G )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
4544eleq2i 2145 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e. recs ( G )  <->  <. (/) ,  ( G `
 (/) ) >.  e.  U. { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) } )
46 eluniab 3613 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  <->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) )
4743, 45, 463bitri 204 . . . 4  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  F  <->  E. f ( <. (/) ,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) ) )
4841, 47syl6ibr 160 . . 3  |-  ( ( G `  (/) )  e.  V  ->  ( ( <.
(/) ,  ( G `  (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  <. (/) ,  ( G `
 (/) ) >.  e.  F
) )
495, 28, 48mp2and 423 . 2  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  F )
50 opeldmg 4558 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  ( <.
(/) ,  ( G `  (/) ) >.  e.  F  -> 
(/)  e.  dom  F ) )
511, 50mpan 414 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  ( <. (/)
,  ( G `  (/) ) >.  e.  F  -> 
(/)  e.  dom  F ) )
5242tfr2a 5959 . . . 4  |-  ( (/)  e.  dom  F  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) )
5351, 52syl6 33 . . 3  |-  ( ( G `  (/) )  e.  V  ->  ( <. (/)
,  ( G `  (/) ) >.  e.  F  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) ) )
54 res0 4634 . . . . 5  |-  ( F  |`  (/) )  =  (/)
5554fveq2i 5201 . . . 4  |-  ( G `
 ( F  |`  (/) ) )  =  ( G `  (/) )
5655eqeq2i 2091 . . 3  |-  ( ( F `  (/) )  =  ( G `  ( F  |`  (/) ) )  <->  ( F `  (/) )  =  ( G `  (/) ) )
5753, 56syl6ib 159 . 2  |-  ( ( G `  (/) )  e.  V  ->  ( <. (/)
,  ( G `  (/) ) >.  e.  F  ->  ( F `  (/) )  =  ( G `  (/) ) ) )
5849, 57mpd 13 1  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   _Vcvv 2601   (/)c0 3251   {csn 3398   <.cop 3401   U.cuni 3601   Oncon0 4118   suc csuc 4120   dom cdm 4363    |` cres 4365    Fn wfn 4917   ` cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-recs 5943
This theorem is referenced by:  rdg0  5997  frec0g  6006
  Copyright terms: Public domain W3C validator