| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fopwdom | Unicode version | ||
| Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fopwdom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 4699 |
. . . . . 6
| |
| 2 | dfdm4 4545 |
. . . . . . 7
| |
| 3 | fof 5126 |
. . . . . . . 8
| |
| 4 | fdm 5070 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | 2, 5 | syl5eqr 2127 |
. . . . . 6
|
| 7 | 1, 6 | syl5sseq 3047 |
. . . . 5
|
| 8 | 7 | adantl 271 |
. . . 4
|
| 9 | cnvexg 4875 |
. . . . . 6
| |
| 10 | 9 | adantr 270 |
. . . . 5
|
| 11 | imaexg 4700 |
. . . . 5
| |
| 12 | elpwg 3390 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3syl 17 |
. . . 4
|
| 14 | 8, 13 | mpbird 165 |
. . 3
|
| 15 | 14 | a1d 22 |
. 2
|
| 16 | imaeq2 4684 |
. . . . . . 7
| |
| 17 | 16 | adantl 271 |
. . . . . 6
|
| 18 | simpllr 500 |
. . . . . . 7
| |
| 19 | simplrl 501 |
. . . . . . . 8
| |
| 20 | 19 | elpwid 3392 |
. . . . . . 7
|
| 21 | foimacnv 5164 |
. . . . . . 7
| |
| 22 | 18, 20, 21 | syl2anc 403 |
. . . . . 6
|
| 23 | simplrr 502 |
. . . . . . . 8
| |
| 24 | 23 | elpwid 3392 |
. . . . . . 7
|
| 25 | foimacnv 5164 |
. . . . . . 7
| |
| 26 | 18, 24, 25 | syl2anc 403 |
. . . . . 6
|
| 27 | 17, 22, 26 | 3eqtr3d 2121 |
. . . . 5
|
| 28 | 27 | ex 113 |
. . . 4
|
| 29 | imaeq2 4684 |
. . . 4
| |
| 30 | 28, 29 | impbid1 140 |
. . 3
|
| 31 | 30 | ex 113 |
. 2
|
| 32 | rnexg 4615 |
. . . . 5
| |
| 33 | forn 5129 |
. . . . . 6
| |
| 34 | 33 | eleq1d 2147 |
. . . . 5
|
| 35 | 32, 34 | syl5ibcom 153 |
. . . 4
|
| 36 | 35 | imp 122 |
. . 3
|
| 37 | pwexg 3954 |
. . 3
| |
| 38 | 36, 37 | syl 14 |
. 2
|
| 39 | dmfex 5099 |
. . . 4
| |
| 40 | 3, 39 | sylan2 280 |
. . 3
|
| 41 | pwexg 3954 |
. . 3
| |
| 42 | 40, 41 | syl 14 |
. 2
|
| 43 | 15, 31, 38, 42 | dom3d 6277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-fv 4930 df-dom 6246 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |