ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem2 Unicode version

Theorem frecsuclem2 6012
Description: Lemma for frecsuc 6014. (Contributed by Jim Kingdon, 15-Aug-2019.)
Hypothesis
Ref Expression
frecsuclem1.h  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frecsuclem2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( (recs ( G )  |`  suc  B
) `  B )  =  (frec ( F ,  A ) `  B
) )
Distinct variable groups:    A, g, m, x, z    B, g, m, x, z    g, F, m, x, z    g, G, m, x, z    g, V, m, x
Allowed substitution hint:    V( z)

Proof of Theorem frecsuclem2
StepHypRef Expression
1 sucidg 4171 . . . 4  |-  ( B  e.  om  ->  B  e.  suc  B )
2 fvres 5219 . . . 4  |-  ( B  e.  suc  B  -> 
( (recs ( G )  |`  suc  B ) `
 B )  =  (recs ( G ) `
 B ) )
31, 2syl 14 . . 3  |-  ( B  e.  om  ->  (
(recs ( G )  |`  suc  B ) `  B )  =  (recs ( G ) `  B ) )
4 df-frec 6001 . . . . . 6  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
5 frecsuclem1.h . . . . . . . 8  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
6 recseq 5944 . . . . . . . 8  |-  ( G  =  ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  -> recs ( G
)  = recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
75, 6ax-mp 7 . . . . . . 7  |- recs ( G )  = recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
87reseq1i 4626 . . . . . 6  |-  (recs ( G )  |`  om )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
94, 8eqtr4i 2104 . . . . 5  |- frec ( F ,  A )  =  (recs ( G )  |`  om )
109fveq1i 5199 . . . 4  |-  (frec ( F ,  A ) `
 B )  =  ( (recs ( G )  |`  om ) `  B )
11 fvres 5219 . . . 4  |-  ( B  e.  om  ->  (
(recs ( G )  |`  om ) `  B
)  =  (recs ( G ) `  B
) )
1210, 11syl5eq 2125 . . 3  |-  ( B  e.  om  ->  (frec ( F ,  A ) `
 B )  =  (recs ( G ) `
 B ) )
133, 12eqtr4d 2116 . 2  |-  ( B  e.  om  ->  (
(recs ( G )  |`  suc  B ) `  B )  =  (frec ( F ,  A
) `  B )
)
14133ad2ant3 961 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( (recs ( G )  |`  suc  B
) `  B )  =  (frec ( F ,  A ) `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    /\ w3a 919   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   E.wrex 2349   _Vcvv 2601   (/)c0 3251    |-> cmpt 3839   suc csuc 4120   omcom 4331   dom cdm 4363    |` cres 4365   ` cfv 4922  recscrecs 5942  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-suc 4126  df-xp 4369  df-res 4375  df-iota 4887  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  frecsuclem3  6013
  Copyright terms: Public domain W3C validator