ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc Unicode version

Theorem frecsuc 6014
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 15-Aug-2019.)
Assertion
Ref Expression
frecsuc  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (frec ( F ,  A ) `  suc  B )  =  ( F `  (frec ( F ,  A ) `
 B ) ) )
Distinct variable groups:    z, A    z, B    z, F
Allowed substitution hint:    V( z)

Proof of Theorem frecsuc
Dummy variables  f  g  m  x  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4157 . . . . . . . . . 10  |-  ( n  =  m  ->  suc  n  =  suc  m )
21eqeq2d 2092 . . . . . . . . 9  |-  ( n  =  m  ->  ( dom  f  =  suc  n 
<->  dom  f  =  suc  m ) )
3 fveq2 5198 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
f `  n )  =  ( f `  m ) )
43fveq2d 5202 . . . . . . . . . 10  |-  ( n  =  m  ->  ( F `  ( f `  n ) )  =  ( F `  (
f `  m )
) )
54eleq2d 2148 . . . . . . . . 9  |-  ( n  =  m  ->  (
x  e.  ( F `
 ( f `  n ) )  <->  x  e.  ( F `  ( f `
 m ) ) ) )
62, 5anbi12d 456 . . . . . . . 8  |-  ( n  =  m  ->  (
( dom  f  =  suc  n  /\  x  e.  ( F `  (
f `  n )
) )  <->  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `  m
) ) ) ) )
76cbvrexv 2578 . . . . . . 7  |-  ( E. n  e.  om  ( dom  f  =  suc  n  /\  x  e.  ( F `  ( f `
 n ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) ) )
87orbi1i 712 . . . . . 6  |-  ( ( E. n  e.  om  ( dom  f  =  suc  n  /\  x  e.  ( F `  ( f `
 n ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) )
98abbii 2194 . . . . 5  |-  { x  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  x  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }
10 eleq1 2141 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( F `
 ( f `  m ) )  <->  y  e.  ( F `  ( f `
 m ) ) ) )
1110anbi2d 451 . . . . . . . 8  |-  ( x  =  y  ->  (
( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  <->  ( dom  f  =  suc  m  /\  y  e.  ( F `  ( f `  m
) ) ) ) )
1211rexbidv 2369 . . . . . . 7  |-  ( x  =  y  ->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  y  e.  ( F `  ( f `
 m ) ) ) ) )
13 eleq1 2141 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1413anbi2d 451 . . . . . . 7  |-  ( x  =  y  ->  (
( dom  f  =  (/) 
/\  x  e.  A
)  <->  ( dom  f  =  (/)  /\  y  e.  A ) ) )
1512, 14orbi12d 739 . . . . . 6  |-  ( x  =  y  ->  (
( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  y  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) ) )
1615cbvabv 2202 . . . . 5  |-  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  =  { y  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  y  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) }
179, 16eqtri 2101 . . . 4  |-  { x  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  x  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  =  { y  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  y  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) }
1817mpteq2i 3865 . . 3  |-  ( f  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  x  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )  =  ( f  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  y  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )
19 dmeq 4553 . . . . . . . . 9  |-  ( f  =  g  ->  dom  f  =  dom  g )
2019eqeq1d 2089 . . . . . . . 8  |-  ( f  =  g  ->  ( dom  f  =  suc  m 
<->  dom  g  =  suc  m ) )
21 fveq1 5197 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f `  m )  =  ( g `  m ) )
2221fveq2d 5202 . . . . . . . . 9  |-  ( f  =  g  ->  ( F `  ( f `  m ) )  =  ( F `  (
g `  m )
) )
2322eleq2d 2148 . . . . . . . 8  |-  ( f  =  g  ->  (
y  e.  ( F `
 ( f `  m ) )  <->  y  e.  ( F `  ( g `
 m ) ) ) )
2420, 23anbi12d 456 . . . . . . 7  |-  ( f  =  g  ->  (
( dom  f  =  suc  m  /\  y  e.  ( F `  (
f `  m )
) )  <->  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `  m
) ) ) ) )
2524rexbidv 2369 . . . . . 6  |-  ( f  =  g  ->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  y  e.  ( F `  ( f `
 m ) ) )  <->  E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) ) ) )
2619eqeq1d 2089 . . . . . . 7  |-  ( f  =  g  ->  ( dom  f  =  (/)  <->  dom  g  =  (/) ) )
2726anbi1d 452 . . . . . 6  |-  ( f  =  g  ->  (
( dom  f  =  (/) 
/\  y  e.  A
)  <->  ( dom  g  =  (/)  /\  y  e.  A ) ) )
2825, 27orbi12d 739 . . . . 5  |-  ( f  =  g  ->  (
( E. m  e. 
om  ( dom  f  =  suc  m  /\  y  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) ) )
2928abbidv 2196 . . . 4  |-  ( f  =  g  ->  { y  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  y  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) }  =  { y  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
3029cbvmptv 3873 . . 3  |-  ( f  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  y  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
3118, 30eqtri 2101 . 2  |-  ( f  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  x  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
3231frecsuclem3 6013 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  (frec ( F ,  A ) `  suc  B )  =  ( F `  (frec ( F ,  A ) `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    /\ w3a 919   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   E.wrex 2349   _Vcvv 2601   (/)c0 3251    |-> cmpt 3839   suc csuc 4120   omcom 4331   dom cdm 4363   ` cfv 4922  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  frecrdg  6015  freccl  6016  frec2uzzd  9402  frec2uzsucd  9403  frec2uzrdg  9411  frecuzrdgsuc  9417
  Copyright terms: Public domain W3C validator