| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass4 | Unicode version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 2988 |
. 2
| |
| 2 | eqcom 2083 |
. . . . . . . . . 10
| |
| 3 | ssel 2993 |
. . . . . . . . . . . 12
| |
| 4 | funbrfvb 5237 |
. . . . . . . . . . . . 13
| |
| 5 | 4 | ex 113 |
. . . . . . . . . . . 12
|
| 6 | 3, 5 | syl9 71 |
. . . . . . . . . . 11
|
| 7 | 6 | imp31 252 |
. . . . . . . . . 10
|
| 8 | 2, 7 | syl5bb 190 |
. . . . . . . . 9
|
| 9 | 8 | rexbidva 2365 |
. . . . . . . 8
|
| 10 | vex 2604 |
. . . . . . . . 9
| |
| 11 | 10 | elima 4693 |
. . . . . . . 8
|
| 12 | 9, 11 | syl6rbbr 197 |
. . . . . . 7
|
| 13 | 12 | imbi1d 229 |
. . . . . 6
|
| 14 | r19.23v 2469 |
. . . . . 6
| |
| 15 | 13, 14 | syl6bbr 196 |
. . . . 5
|
| 16 | 15 | albidv 1745 |
. . . 4
|
| 17 | 16 | ancoms 264 |
. . 3
|
| 18 | ralcom4 2621 |
. . . 4
| |
| 19 | ssel2 2994 |
. . . . . . . . 9
| |
| 20 | 19 | anim2i 334 |
. . . . . . . 8
|
| 21 | 20 | 3impb 1134 |
. . . . . . 7
|
| 22 | funfvex 5212 |
. . . . . . 7
| |
| 23 | nfv 1461 |
. . . . . . . 8
| |
| 24 | eleq1 2141 |
. . . . . . . 8
| |
| 25 | 23, 24 | ceqsalg 2627 |
. . . . . . 7
|
| 26 | 21, 22, 25 | 3syl 17 |
. . . . . 6
|
| 27 | 26 | 3expa 1138 |
. . . . 5
|
| 28 | 27 | ralbidva 2364 |
. . . 4
|
| 29 | 18, 28 | syl5bbr 192 |
. . 3
|
| 30 | 17, 29 | bitrd 186 |
. 2
|
| 31 | 1, 30 | syl5bb 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 |
| This theorem is referenced by: funimass3 5304 funimass5 5305 funconstss 5306 funimassov 5670 |
| Copyright terms: Public domain | W3C validator |