| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funun | Unicode version | ||
| Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 4939 |
. . . . 5
| |
| 2 | funrel 4939 |
. . . . 5
| |
| 3 | 1, 2 | anim12i 331 |
. . . 4
|
| 4 | relun 4472 |
. . . 4
| |
| 5 | 3, 4 | sylibr 132 |
. . 3
|
| 6 | 5 | adantr 270 |
. 2
|
| 7 | elun 3113 |
. . . . . . . 8
| |
| 8 | elun 3113 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12i 447 |
. . . . . . 7
|
| 10 | anddi 767 |
. . . . . . 7
| |
| 11 | 9, 10 | bitri 182 |
. . . . . 6
|
| 12 | disj1 3294 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | biimpi 118 |
. . . . . . . . . . . 12
|
| 14 | 13 | 19.21bi 1490 |
. . . . . . . . . . 11
|
| 15 | imnan 656 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylib 120 |
. . . . . . . . . 10
|
| 17 | vex 2604 |
. . . . . . . . . . . 12
| |
| 18 | vex 2604 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | opeldm 4556 |
. . . . . . . . . . 11
|
| 20 | vex 2604 |
. . . . . . . . . . . 12
| |
| 21 | 17, 20 | opeldm 4556 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anim12i 331 |
. . . . . . . . . 10
|
| 23 | 16, 22 | nsyl 590 |
. . . . . . . . 9
|
| 24 | orel2 677 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 14 | con2d 586 |
. . . . . . . . . . 11
|
| 27 | imnan 656 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylib 120 |
. . . . . . . . . 10
|
| 29 | 17, 18 | opeldm 4556 |
. . . . . . . . . . 11
|
| 30 | 17, 20 | opeldm 4556 |
. . . . . . . . . . 11
|
| 31 | 29, 30 | anim12i 331 |
. . . . . . . . . 10
|
| 32 | 28, 31 | nsyl 590 |
. . . . . . . . 9
|
| 33 | orel1 676 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 25, 34 | orim12d 732 |
. . . . . . 7
|
| 36 | 35 | adantl 271 |
. . . . . 6
|
| 37 | 11, 36 | syl5bi 150 |
. . . . 5
|
| 38 | dffun4 4933 |
. . . . . . . . . 10
| |
| 39 | 38 | simprbi 269 |
. . . . . . . . 9
|
| 40 | 39 | 19.21bi 1490 |
. . . . . . . 8
|
| 41 | 40 | 19.21bbi 1491 |
. . . . . . 7
|
| 42 | dffun4 4933 |
. . . . . . . . . 10
| |
| 43 | 42 | simprbi 269 |
. . . . . . . . 9
|
| 44 | 43 | 19.21bi 1490 |
. . . . . . . 8
|
| 45 | 44 | 19.21bbi 1491 |
. . . . . . 7
|
| 46 | 41, 45 | jaao 671 |
. . . . . 6
|
| 47 | 46 | adantr 270 |
. . . . 5
|
| 48 | 37, 47 | syld 44 |
. . . 4
|
| 49 | 48 | alrimiv 1795 |
. . 3
|
| 50 | 49 | alrimivv 1796 |
. 2
|
| 51 | dffun4 4933 |
. 2
| |
| 52 | 6, 50, 51 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-fun 4924 |
| This theorem is referenced by: funprg 4969 funtpg 4970 funtp 4972 fnun 5025 fvun1 5260 |
| Copyright terms: Public domain | W3C validator |