| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsnun2 | Unicode version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5381. (Contributed by NM, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 |
|
| fvsnun.2 |
|
| fvsnun.3 |
|
| Ref | Expression |
|---|---|
| fvsnun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 |
. . . . 5
| |
| 2 | 1 | reseq1i 4626 |
. . . 4
|
| 3 | resundir 4644 |
. . . 4
| |
| 4 | disjdif 3316 |
. . . . . . 7
| |
| 5 | fvsnun.1 |
. . . . . . . . 9
| |
| 6 | fvsnun.2 |
. . . . . . . . 9
| |
| 7 | 5, 6 | fnsn 4973 |
. . . . . . . 8
|
| 8 | fnresdisj 5029 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-mp 7 |
. . . . . . 7
|
| 10 | 4, 9 | mpbi 143 |
. . . . . 6
|
| 11 | residm 4660 |
. . . . . 6
| |
| 12 | 10, 11 | uneq12i 3124 |
. . . . 5
|
| 13 | uncom 3116 |
. . . . 5
| |
| 14 | un0 3278 |
. . . . 5
| |
| 15 | 12, 13, 14 | 3eqtri 2105 |
. . . 4
|
| 16 | 2, 3, 15 | 3eqtri 2105 |
. . 3
|
| 17 | 16 | fveq1i 5199 |
. 2
|
| 18 | fvres 5219 |
. 2
| |
| 19 | fvres 5219 |
. 2
| |
| 20 | 17, 18, 19 | 3eqtr3a 2137 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-res 4375 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 |
| This theorem is referenced by: facnn 9654 |
| Copyright terms: Public domain | W3C validator |