ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 Unicode version

Theorem fz0fzelfz0 9138
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 9128 . . . 4  |-  ( N  e.  ( 0 ... R )  <->  ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R ) )
2 elfz2 9036 . . . . . 6  |-  ( M  e.  ( N ... R )  <->  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) ) )
3 simplr 496 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  ZZ )
4 0red 7120 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  e.  RR )
5 nn0re 8297 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  RR )
65adantr 270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  N  e.  RR )
7 zre 8355 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ZZ  ->  M  e.  RR )
87adantl 271 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  M  e.  RR )
94, 6, 83jca 1118 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )
)
109adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
11 nn0ge0 8313 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  0  <_  N )
1211adantr 270 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  <_  N )
1312anim1i 333 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  <_  N  /\  N  <_  M ) )
14 letr 7194 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  M )  ->  0  <_  M
) )
1510, 13, 14sylc 61 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  0  <_  M )
16 elnn0z 8364 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
173, 15, 16sylanbrc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  NN0 )
1817exp31 356 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( M  e.  ZZ  ->  ( N  <_  M  ->  M  e.  NN0 ) ) )
1918com23 77 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
20193ad2ant1 959 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
2120com13 79 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( N  <_  M  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2221adantrd 273 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
23223ad2ant3 961 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2423imp 122 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) )
2524imp 122 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  e.  NN0 )
26 simpr2 945 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  R  e.  NN0 )
27 simplrr 502 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  <_  R
)
2825, 26, 273jca 1118 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  ( M  e. 
NN0  /\  R  e.  NN0 
/\  M  <_  R
) )
2928ex 113 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
302, 29sylbi 119 . . . . 5  |-  ( M  e.  ( N ... R )  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3130com12 30 . . . 4  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
321, 31sylbi 119 . . 3  |-  ( N  e.  ( 0 ... R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3332imp 122 . 2  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) )
34 elfz2nn0 9128 . 2  |-  ( M  e.  ( 0 ... R )  <->  ( M  e.  NN0  /\  R  e. 
NN0  /\  M  <_  R ) )
3533, 34sylibr 132 1  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981    <_ cle 7154   NN0cn0 8288   ZZcz 8351   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  fz0fzdiffz0  9141
  Copyright terms: Public domain W3C validator