ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznlem Unicode version

Theorem fznlem 9060
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
Assertion
Ref Expression
fznlem  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )

Proof of Theorem fznlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 zre 8355 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
2 zre 8355 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
3 lenlt 7187 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
41, 2, 3syl2an 283 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  -.  N  <  M ) )
54biimpd 142 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  -.  N  <  M
) )
65con2d 586 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  -.  M  <_  N
) )
76imp 122 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  -.  M  <_  N )
87adantr 270 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  -.  M  <_  N )
9 simplll 499 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  M  e.  ZZ )
109zred 8469 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  M  e.  RR )
11 simpr 108 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1211zred 8469 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  k  e.  RR )
13 simpllr 500 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
1413zred 8469 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  N  e.  RR )
15 letr 7194 . . . . . . 7  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  N  e.  RR )  ->  (
( M  <_  k  /\  k  <_  N )  ->  M  <_  N
) )
1610, 12, 14, 15syl3anc 1169 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  M  <_  N
) )
178, 16mtod 621 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  -.  ( M  <_  k  /\  k  <_  N ) )
1817ralrimiva 2434 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  A. k  e.  ZZ  -.  ( M  <_  k  /\  k  <_  N ) )
19 rabeq0 3274 . . . 4  |-  ( { k  e.  ZZ  | 
( M  <_  k  /\  k  <_  N ) }  =  (/)  <->  A. k  e.  ZZ  -.  ( M  <_  k  /\  k  <_  N ) )
2018, 19sylibr 132 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) }  =  (/) )
21 fzval 9031 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
2221eqeq1d 2089 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M ... N )  =  (/)  <->  {
k  e.  ZZ  | 
( M  <_  k  /\  k  <_  N ) }  =  (/) ) )
2322adantr 270 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  ( ( M ... N )  =  (/) 
<->  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }  =  (/) ) )
2420, 23mpbird 165 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  ( M ... N )  =  (/) )
2524ex 113 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   {crab 2352   (/)c0 3251   class class class wbr 3785  (class class class)co 5532   RRcr 6980    < clt 7153    <_ cle 7154   ZZcz 8351   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltwlin 7089
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-neg 7282  df-z 8352  df-fz 9030
This theorem is referenced by:  fzn  9061
  Copyright terms: Public domain W3C validator