ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznlem GIF version

Theorem fznlem 9060
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
Assertion
Ref Expression
fznlem ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))

Proof of Theorem fznlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zre 8355 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 8355 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 lenlt 7187 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
41, 2, 3syl2an 283 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
54biimpd 142 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ¬ 𝑁 < 𝑀))
65con2d 586 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → ¬ 𝑀𝑁))
76imp 122 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
87adantr 270 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ 𝑀𝑁)
9 simplll 499 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
109zred 8469 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ)
11 simpr 108 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1211zred 8469 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
13 simpllr 500 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
1413zred 8469 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℝ)
15 letr 7194 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
1610, 12, 14, 15syl3anc 1169 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
178, 16mtod 621 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ (𝑀𝑘𝑘𝑁))
1817ralrimiva 2434 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
19 rabeq0 3274 . . . 4 ({𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅ ↔ ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
2018, 19sylibr 132 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅)
21 fzval 9031 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2221eqeq1d 2089 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2322adantr 270 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2420, 23mpbird 165 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝑀...𝑁) = ∅)
2524ex 113 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  {crab 2352  c0 3251   class class class wbr 3785  (class class class)co 5532  cr 6980   < clt 7153  cle 7154  cz 8351  ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltwlin 7089
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-neg 7282  df-z 8352  df-fz 9030
This theorem is referenced by:  fzn  9061
  Copyright terms: Public domain W3C validator